Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (1): 63-70    DOI: 10.3785/j.issn.1008-973X.2023.01.007
机械与能源工程     
太阳电池工程简化模型参数确定及模型应用
虞效益1(),饶大千2,胡长兴1,3,徐美娟1,*()
1. 浙大宁波理工学院 机电与能源工程学院,浙江 宁波 315100
2. 浙江大学 制冷与低温研究所,浙江 杭州 310027
3. 浙江大学宁波研究院,浙江 宁波 315100
Parameter estimation of solar cell engineering model and model application
Xiao-yi YU1(),Da-qian RAO2,Chang-xing HU1,3,Mei-juan XU1,*()
1. School of Mechatronics and Energy Engineering, NingboTech University, Ningbo 315100, China
2. Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China
3. Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
 全文: PDF(864 KB)   HTML
摘要:

针对现有文献中太阳电池工程简化模型的模型系数值不适用于当今光伏组件的问题,提出简单的仅需利用光伏组件出厂数据的模型系数确定方法.系数b通过拟合25 ℃下不同辐照度对应的开路电压数据得到,系数ac分别取短路电流和开路电压的温度系数. 不同厂家生产的光伏组件系数b不同,同一厂家生产的不同型号的光伏组件系数b可以取相同值.综合改进后的太阳电池工程简化模型、分段函数形式的太阳电池温度模型和考虑安装条件的入射光强度模型,开展光伏组件电气输出特性的动态仿真. 当组件倾角小于最佳倾角时,角度变化对最大输出功率的影响很小;当倾角大于最佳倾角时,角度变化对最大输出功率的影响较大,影响程度随着角度的增大而增大.

关键词: 太阳电池工程简化模型模型参数估计电池温度模型辐照度模型    
Abstract:

A simple method for estimating model parameters that only uses the available information in the manufacturer datasheet was proposed aiming at the problem that the parameter values of the simplified solar cell engineering model in the existing literature were not suitable for current PV modules. The parameter b was obtained by fitting the open-circuit voltage data corresponding to different irradiance at 25 ℃. The parameters a and c were treated equal to the temperature coefficients of the short-circuit current and the open-circuit voltage, respectively. The value of parameter b for PV modules produced by different manufacturers is different, while it can take the same value for the same manufacturer’s different type of PV modules. The electrical output characteristics of PV modules were dynamically simulated by integrating the improved solar cell engineering model, the cell temperature model in piecewise function form and the solar irradiance model considering the installation conditions of the PV module. The angle change has little effect on the maximum output power when the module inclination angle is less than the optimal one. The angle change has a great influence on the maximum output power when the inclination angle is greater than the optimum one, and the influence degree increases with the increase of the angle.

Key words: simplified solar cell engineering model    model parameter estimation    cell temperature model    irradiance model
收稿日期: 2022-02-05 出版日期: 2023-01-17
CLC:  TK 514  
基金资助: 国家自然科学基金资助项目(51406180);宁波市自然科学基金资助项目(202003N4312)
通讯作者: 徐美娟     E-mail: yuxiaoyi@nbt.edu.cn;03nyhjyxy@zju.edu.cn
作者简介: 虞效益(1984—),男,副教授,博士,从事太阳能利用的研究. orcid.org/0000-0003-1404-7216. E-mail: yuxiaoyi@nbt.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
虞效益
饶大千
胡长兴
徐美娟

引用本文:

虞效益,饶大千,胡长兴,徐美娟. 太阳电池工程简化模型参数确定及模型应用[J]. 浙江大学学报(工学版), 2023, 57(1): 63-70.

Xiao-yi YU,Da-qian RAO,Chang-xing HU,Mei-juan XU. Parameter estimation of solar cell engineering model and model application. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 63-70.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.01.007        https://www.zjujournals.com/eng/CN/Y2023/V57/I1/63

厂家 Ec/(W?m?2) Voc,exp/V b/(m2?W?1) Voc,cal/V RE/%
文献值 拟合值 采用文献b 采用拟合b 采用文献b 采用拟合b
晶科 1000 43.53 0.0005 0.00028 43.93 43.93 0.92 0.92
晶科 800 42.98 0.0005 0.00028 42.28 43.02 ?1.62 0.08
晶科 600 42.33 0.0005 0.00028 40.57 42.08 ?4.15 ?0.59
晶科 400 41.40 0.0005 0.00028 38.79 41.13 ?6.30 ?0.66
晶科 200 39.83 0.0005 0.00028 36.94 40.15 ?7.26 0.81
晶澳 1000 41.35 0.0005 0.00018 41.32 41.32 ?0.07 ?0.07
晶澳 800 40.95 0.0005 0.00018 39.77 40.77 ?2.88 ?0.44
晶澳 600 40.56 0.0005 0.00018 38.16 40.21 ?5.91 ?0.85
晶澳 400 39.87 0.0005 0.00018 36.49 39.64 ?8.48 ?0.56
晶澳 200 38.78 0.0005 0.00018 34.74 39.07 ?10.41 0.75
天合 1000 49.55 0.0005 0.00016 49.40 49.40 ?0.30 ?0.30
天合 800 49.01 0.0005 0.00016 47.55 48.81 ?2.98 ?0.40
天合 600 48.38 0.0005 0.00016 45.62 48.22 ?5.70 ?0.32
天合 400 47.76 0.0005 0.00016 43.62 47.62 ?8.66 ?0.29
天合 200 46.86 0.0005 0.00016 41.54 47.02 ?11.36 0.34
表 1  采用新旧b值的开路电压计算结果的比较
型号 Ec /(W?m?2) Voc,exp /V b /(m2?W?1) Voc,cal /V RE /%
晶澳
JAM60S10-335/MR
1000 41.35 0.00018 41.32 ?0.07
800 40.95 0.00018 40.77 ?0.44
600 40.56 0.00018 40.21 ?0.85
400 39.87 0.00018 39.64 ?0.56
200 38.78 0.00018 39.07 0.75
晶澳
JAM54S30-405/MR
1000 37.22 0.00018 37.23 0.03
800 36.87 0.00018 36.73 ?0.37
600 36.43 0.00018 36.23 ?0.55
400 35.91 0.00018 35.72 ?0.53
200 34.96 0.00018 35.20 0.70
晶澳
JAM72S20-455/MR
1000 49.50 0.00018 49.85 0.71
800 49.01 0.00018 49.19 0.36
600 48.52 0.00018 48.51 ?0.02
400 47.79 0.00018 47.83 0.08
200 46.57 0.00018 47.14 1.22
表 2  同一厂家不同型号组件采用同一b值的开路电压计算结果
参数 参数值
开路电压 41.32 V
短路电流 10.38 A
最大功率点电压 34.48 V
最大功率点电流 9.72 A
最大功率 335 W
短路电流温度系数 +0.044%/℃
开路电压温度系数 ?0.272%/℃
最大功率温度系数 ?0.350%/℃
表 3  晶澳JAM60S10-335/MR组件在STC下的参数
图 1  不同入射光辐照度和电池温度下的I-V和P-V曲线
Ec /(W?m?2) Pm,exp /W 式(10)+文献[9~12]系数 式(10)+本文系数 式(11)
Pm,cal /W RE /% RMSE /% Pm,cal /W RE /% RMSE /% Pm,cal /W RE /% RMSE /%
1000 335.7 335.1 ?0.18 9.07 335.1 ?0.18 2.81 335 ?0.21 1.11
800 269.1 258.1 ?4.09 264.5 ?1.71 268 ?0.41
600 202.5 185.7 ?8.31 195.7 ?3.37 201 ?0.75
400 133.7 118.4 ?11.46 128.6 ?3.84 134 0.20
200 65.5 56.4 ?13.94 63.4 ?3.22 67 2.31
表 4  最大功率计算值与测量值比较(tc= 25 ℃)
组件类型 安装方式 k1 k2
玻璃/硅电池/玻璃 敞开支架 ?0.35 ?0.0594
玻璃/硅电池/玻璃 靠近屋顶 ?2.98 ?0.0471
玻璃/硅电池/聚合物层 敞开支架 ?3.56 ?0.0750
玻璃/硅电池/聚合物层 绝热背面 ?2.81 ?0.0455
聚合物层/薄膜/不锈钢 敞开支架 ?3.58 ?0.1130
表 5  不同组件类型和安装方式的k1、k2取值
图 2  太阳电池温度计算模型的比较(风速Vw= 1 m/s)
图 3  光伏组件方位角对最大输出功率的影响
图 4  光伏组件倾角对最大输出功率的影响
1 GU W, MA T, SHEN L, et al Coupled electrical-thermal modelling of photovoltaic modules under dynamic conditions[J]. Energy, 2019, 188 (23): 1- 15
2 申璐. 光伏器件能量分布的综合建模和实验研究[D]. 上海: 上海交通大学, 2020.
SHEN Lu. Modeling and experimental study of energy distribution of solar photovoltaic devices [D]. Shanghai: Shanghai Jiao Tong University, 2020.
3 CHIN V J, SALAM Z, ISHAQUE K Cell modelling and model parameters estimation techniques for photovoltaic simulator application: a review[J]. Applied Energy, 2015, 154 (18): 500- 519
4 孙航, 肖海伟, 李晓辉, 等 光伏电池模型综述[J]. 电源技术, 2016, 40 (3): 743- 745
SUN Hang, XIAO Hai-wei, LI Xiao-hui, et al Review in photovoltaic cell model[J]. Chinese Journal of Power Sources, 2016, 40 (3): 743- 745
doi: 10.3969/j.issn.1002-087X.2016.03.078
5 易施光, 张文杰, 罗志荣, 等 太阳电池各等效电路模型的对比分析[J]. 玉林师范学院学报:自然科学, 2020, 41 (3): 20- 25
YI Shi-guang, ZHANG Wen-jie, LUO Zhi-rong, et al Comparative analysis of various equivalent circuit models of solar cells[J]. Journal of Yulin Normal University: Natural Science, 2020, 41 (3): 20- 25
6 BELLINI A, BIFARETTI S, IACOVONE V, et al. Simplified model of a photovoltaic module [C]// 2009 Applied Electronics. Pilsen: IEEE, 2009: 47-51.
7 LIAO Z L, XU Y J, XU D An improved engineering model of silicon solar cell[J]. Advanced Materials Research, 2011, 204-210 (1): 1669- 1672
8 肖文波, 胡方雨, 戴锦, 等 太阳电池工程数学模型精确度对比分析研究[J]. 太阳能学报, 2016, 37 (3): 703- 708
XIAO Wen-bo, HU Fang-yu, DAI Jin, et al Comparison and investigation on the accuracy of the photovoltaic cells engineering mathematical model[J]. Acta Energiae Solaris Sinica, 2016, 37 (3): 703- 708
doi: 10.3969/j.issn.0254-0096.2016.03.027
9 苏建徽, 余世杰, 赵为, 等 硅太阳电池工程用数学模型[J]. 太阳能学报, 2001, 22 (4): 409- 412
SU Jian-hui, YU Shi-jie, ZHAO Wei, et al Investigation on engineering analytical model of silicon solar cells[J]. Acta Energiae Solaris Sinica, 2001, 22 (4): 409- 412
doi: 10.3321/j.issn:0254-0096.2001.04.009
10 戴聿雯. 光伏阵列输出特性研究及预估分析[D]. 合肥: 合肥工业大学, 2007.
DAI Yu-wen. Research and evaluation on solar array’s output characteristics [D]. Hefei: Hefei University of Technology, 2007.
11 廖志凌, 阮新波 任意光强和温度下的硅太阳电池非线性工程简化数学模型[J]. 太阳能学报, 2009, 30 (4): 430- 435
LIAO Zhi-ling, RUAN Xin-bo Nonlinear engineering simplification model of silicon solar cells in arbitrary solar radiation and temperature[J]. Acta Energiae Solaris Sinica, 2009, 30 (4): 430- 435
doi: 10.3321/j.issn:0254-0096.2009.04.005
12 杨文杰. 光伏发电并网与微网运行控制仿真研究[D]. 成都: 西南交通大学, 2010.
YANG Wen-jie. Simulation and research of grid connected photovoltaic generation and microgrid operation control [D]. Chengdu: Southwest Jiaotong University, 2010.
13 许玉贞, 詹红霞, 张瑞冬, 等 基于仿真模型的光伏电池输出功率的分析[J]. 半导体光电, 2014, 35 (6): 1115- 1118
XU Yu-zhen, ZHAN Hong-xia, ZHANG Rui-dong, et al Analysis on the output power of photovoltaic cells based on simulation model[J]. Semiconductor Optoelectronics, 2014, 35 (6): 1115- 1118
doi: 10.16818/j.issn1001-5868.2014.06.039
14 LI C X, SPATARU S V, ZHANG K J, et al A multi-state dynamic thermal model for accurate photovoltaic cell temperature estimation[J]. IEEE Journal of Photovoltaics, 2020, 10 (5): 1465- 1473
doi: 10.1109/JPHOTOV.2020.2987401
15 DOLARA A, LEVA S, MANZOLINI G Comparison of different physical models for PV power output prediction[J]. Solar Energy, 2015, 119 (9): 83- 99
16 COSKUN C, TOYGAR U, SARPDAG O, et al Sensitivity analysis of implicit correlations for photovoltaic module temperature: a review[J]. Journal of Cleaner Production, 2017, 164 (1): 1474- 1485
17 MATTEI M, NOTTON G, CRISTOFARI C, et al Calculation of the polycrystalline PV module temperature using a simple method of energy balance[J]. Renewable Energy, 2006, 31 (4): 553- 567
doi: 10.1016/j.renene.2005.03.010
18 李梦. 装配式建筑光伏一体化预制构件的电热性能及其对建筑能耗影响的研究[D]. 上海: 上海交通大学, 2020.
LI Meng. Experimental and numerical investigation of precast concrete façade integrated with photovoltaic panels and its effects on buildings energy consumption [D]. Shanghai: Shanghai Jiao Tong University, 2020.
19 肖泽成. 太阳电池组件的水冷冷却流动传热特性及方法研究[D]. 广州: 广东工业大学, 2012.
XIAO Ze-cheng. Research on the water-cooled solar photovoltaic module’s heat transfer characteristics and methods [D]. Guangzhou: Guangdong University of Technology, 2012.
20 龚皓, 朱晓岗 光伏玻璃透光率测量方法简析[J]. 太阳能, 2012, 33 (19): 19- 22
GONG Hao, ZHU Xiao-gang Brief analysis of measurement method of photovoltaic glass transmittance[J]. Solar Energy, 2012, 33 (19): 19- 22
doi: 10.3969/j.issn.1003-0417.2012.19.005
21 韩延刚, 陈洪波, 江敏芳, 等 光伏玻璃透光性能评价方法及影响因素研究[J]. 化工新材料, 2014, 42 (11): 154- 155
HAN Yan-gang, CHEN Hong-bo, JIANG Min-fang, et al Transmission property and influencing factor pf solar glass[J]. New Chemical Materials, 2014, 42 (11): 154- 155
22 刘鉴民. 太阳能利用: 原理∙技术∙工程[M]. 北京: 电子工业出版社, 2010.
23 张鹤飞. 太阳能热利用原理与计算机模拟[M]. 2版. 西安: 西北工业大学出版社, 2004.
24 曾泽荣, 李进, 罗多, 等 中国建筑分布式光伏利用现状及未来趋势分析[J]. 建设科技, 2020, 19 (20): 10- 14
ZENG Ze-rong, LI Jin, LUO Duo, et al Analysis of current situation and future trend of distributed photovoltaic utilization in Chinese buildings[J]. Construction Science and Technology, 2020, 19 (20): 10- 14
doi: 10.16116/j.cnki.jskj.2020.20.001
25 中国气象局气象信息中心气象资料室, 清华大学建筑技术科学系. 中国建筑热环境分析专用气象数据集[M]. 北京: 中国建筑工业出版社, 2005.
26 何宝华, 王慧, 赵邦桂, 等 太阳电池组件中玻璃与EVA透光率测试方法研究[J]. 上海航天, 2014, 31 (Supple.1): 86- 87
HE Bao-hua, WANG Hui, ZAHO Bang-gui, et al Study on transmittance test method of glass and EVA used in solar modules[J]. Aerospace Shanghai, 2014, 31 (Supple.1): 86- 87
doi: 10.19328/j.cnki.1006-1630.2014.s1.024
[1] 张国月,曲轶龙,齐冬莲,李冉. 基于重复控制的三电平光伏逆变技术[J]. J4, 2012, 46(7): 1339-1344.