计算机技术、信息与电子工程 |
|
|
|
|
基于卷积姿态机的潜航员作业姿态识别方法 |
王憬鸾( ),陈登凯*( ),朱梦雅,王晗宇,孙意为 |
西北工业大学 陕西省工业设计工程实验室,陕西 西安 710072 |
|
Recognition method of submarine operation posture based on convolutional pose machine |
Jing-luan WANG( ),Deng-kai CHEN*( ),Meng-ya ZHU,Han-yu WANG,Yi-wei SUN |
Shaanxi Engineering Laboratory for Industrial Design, Northwestern Polytechnical University, Xi'an 710072, China |
引用本文:
王憬鸾,陈登凯,朱梦雅,王晗宇,孙意为. 基于卷积姿态机的潜航员作业姿态识别方法[J]. 浙江大学学报(工学版), 2022, 56(1): 26-35.
Jing-luan WANG,Deng-kai CHEN,Meng-ya ZHU,Han-yu WANG,Yi-wei SUN. Recognition method of submarine operation posture based on convolutional pose machine. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 26-35.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.01.003
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I1/26
|
1 |
CHEN D K, FAN Y, LI W H, et al Human reliability prediction in deep-sea sampling process of the manned submersible[J]. Safety Science, 2019, 112 (2): 1- 8
|
2 |
张帅, 何卫平, 陈登凯, 等 载人潜水器舱室空间舒适性复合评估方法[J]. 哈尔滨工业大学学报, 2019, 51 (10): 83- 89 ZHANG Shuai, HE Wei-ping, CHEN Deng-kai, et al Compound evaluation method for the space comfort of manned submersible[J]. Journal of Harbin Institute of Technology, 2019, 51 (10): 83- 89
doi: 10.11918/j.issn.0367-6234.201810148
|
3 |
张宁, 李亚军, 段齐骏, 等 面向老年俯身作业的人机工程舒适性设计[J]. 浙江大学学报: 工学版, 2017, 51 (1): 95- 105 ZHANG Ning, LI Ya-jun, DUAN Qi-jun, et al Man-machine comfortable designing for bending operations of elderly[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (1): 95- 105
|
4 |
TRASK C, MATHIASSEN S E, ROSTAMI M, et al Observer variability in posture assessment from video recordings: The effect of partly visible periods[J]. Applied Ergonomics, 2017, 60 (4): 275- 281
|
5 |
朱德慰, 李志海, 吴镇炜. 基于异常行为监测的人机安全协作方法[EB/OL]. [2021-04-21]. http://kns.cnki.net/kcms/detail/11.5946.TP.20210329.1645.018.html. ZHU De-wei, LI Zhi-hai, WU Zhen-wei. Abnormal behavior monitoring based method for safe human-robot collaboration [EB/OL]. [2021-04-21]. http://kns.cnki.net/kcms/detail/11.5946.TP.20210329.1645.018.html.
|
6 |
MANGHISI V M, UVA A E, FIORENTINO M, et al Real time RULA assessment using Kinect v2 sensor[J]. Applied Ergonomics, 2017, 65 (11): 481- 491
|
7 |
PLANTARD P, SHUM H P, PIERRES A S, et al Validation of an ergonomic assessment method using kinect data in real workplace conditions[J]. Applied Ergonomics, 2017, 65 (11): 562- 569
|
8 |
TOPLEY M, RICHARDS J G A comparison of currently available optoelectronic motion capture systems[J]. Journal of Biomechanics, 2020, 106 (6): 109820
|
9 |
YAN X Z, LI H, ANGUS R L, et al Wearable IMU-based real-time motion warning system for construction workers' musculoskeletal disorders prevention[J]. Automation in Construction, 2017, 74 (2): 2- 11
|
10 |
HUYNH-THE T, HUA C H, NGO T T, et al Image representation of pose-transition feature for 3D skeleton-based action recognition[J]. Information Sciences, 2020, 513 (5): 112- 126
|
11 |
袁公萍, 汤一平, 韩旺明, 等 基于深度卷积神经网络的车型识别方法[J]. 浙江大学学报: 工学版, 2018, 52 (4): 694- 702 YUAN Gong-ping, TANG Yi-ping, HAN Wang-ming, et al Vehicle category recognition based on deep convolutional neural network[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (4): 694- 702
|
12 |
LECUN Y, BENGIO Y, HINTON G Deep learning[J]. Nature, 2015, 521 (3): 436- 444
|
13 |
CAO Z, SIMOM T, WEI S E, et al. Realtime multi-person 2d pose estimation using part affinity fields [C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake: IEEE, 2018: 1302-1310.
|
14 |
OBERWEGER M, WOHLHART P, LEPETIT V Hands deep in deep learning for hand pose estimation[J]. Computer Sciences, 2015, 24 (12): 21- 30
|
15 |
WEI S E, RAMAKRISHNA V, KANADE T, et al. Convolutional pose machines [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 4724-4732.
|
16 |
PROMSRI A, HAID T, FEDEROLF P How does lower limb dominance influence postural control movements during single leg stance?[J]. Human Movement Science, 2018, 58 (4): 165- 174
|
17 |
PFISTER T, CHARLES J, ZISSERMAN A. Flowing ConvNets for human pose estimation in videos [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1913-1921.
|
18 |
PISHCHULIN L, INSAFUTDINOV E, TANG S, et al. DeepCut: joint subset partition and labeling for multi person pose estimation [C]// Proceeding of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 4929-4937.
|
19 |
CHEN Y, WANG Z C, PENG Y X, et al. Cascaded pyramid network for multi-person pose estimation [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake: IEEE, 2018: 7103-7112.
|
20 |
SU K, YU D D, XU Z Q, et al. Multi-person pose estimation with enhanced channel-wise and spatial information [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5674-5682.
|
21 |
ZHANG J, CHEN Z, TAO D. Towards high performance human keypoint detection [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|