Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (4): 665-674    DOI: 10.3785/j.issn.1008-973X.2021.04.008
计算机技术、电信技术     
嵌入式微通道传热特性及局部热点尺度效应
邱云龙(),胡文杰,吴昌聚*(),陈伟芳
浙江大学 航空航天学院,浙江 杭州 310027
Heat transfer performance and scale effect of hot spots in embedded microchannel cooling system
Yun-long QIU(),Wen-jie HU,Chang-ju WU*(),Wei-fang CHEN
School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1718 KB)   HTML
摘要:

通过实验测试结合理论分析,研究嵌入式微通道冷却系统的传热特性及局部热点的尺度效应. 测试芯片加工采用MEMS工艺,微通道层与顶层之间的连接采用硅硅直接键合,芯片与电路板(PCB)之间的连接采用倒装焊接. 研究结果表明,采用嵌入式微通道设计极大地缩短了微芯片到微通道的导热距离,可以显著地减小微芯片到环境的热阻. 根据测试结果可知,在100 W/cm2均匀热流密度的条件下,使用6.84 mW/cm2的泵功,可以将模拟IC热源的温升控制到小于40 K,能效比超过14 000. 在非均匀热流密度的条件下,局部热点的存在会增大导热热阻在总热阻中的占比,局部热点尺度越小,热点附近的侧向热传导越严重,导热热阻越大,这减小了对流换热热阻在热点区域总热阻中的占比,使得增大对流换热系数带来的总热阻降低效果减弱.

关键词: 芯片冷却微通道MEMS局部热点热阻对流换热    
Abstract:

An experimental and theoretical study was presented to analyze the heat transfer performance and the scale effect of hot spots in embedded microchannel liquid cooling system. MEMS micromachining was used to fabricate the test chip, silicon-to-silicon direct bonding was used to bond the microchannel layer to the silicon cover, and Flip-chip bonding was used to bond the test chip to a printed circuit board. Results show that the embedded-microchannel design greatly reduces the thermal conduction distance from the microchip to the microchannel, resulting in a low thermal resistance from the microchip to environment. The test results show that the temperature rise of the simulated IC under a uniform heat flux of 100 W/cm2 can be controlled within 40 K using only 6.84 mW/cm2 of pumping power with a coefficient of performance exceeding 14 000. The existence of hot spots increases the proportion of the heat conduction resistance in the total thermal resistance of the hot spot area under a non-uniform heat flux. The smaller the size of the hot spot area was, the more serious the lateral heat conduction was and the thermal conduction resistance became larger, which indirectly reduced the proportion of the heat convection resistance in the total thermal resistance of the hot spot area. Then the benefit of increasing the convective heat transfer coefficient on decreasing the total thermal resistance of the hot spot area was decreased.

Key words: chip cooling    microchannel    MEMS    hot spot    thermal resistance    heat convection
收稿日期: 2020-09-15 出版日期: 2021-05-07
CLC:  TN 30  
基金资助: 国家自然科学基金资助项目(51575487);国家自然科学基金重大科研仪器研制项目(6162790014)
通讯作者: 吴昌聚     E-mail: qyl1992@zju.edu.cn;wuchangju@zju.edu.cn
作者简介: 邱云龙(1992—),男,博士生,从事微电子冷却与微流控技术的研究. orcid.org/0000-0002-2873-743X.E-mail: qyl1992@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
邱云龙
胡文杰
吴昌聚
陈伟芳

引用本文:

邱云龙,胡文杰,吴昌聚,陈伟芳. 嵌入式微通道传热特性及局部热点尺度效应[J]. 浙江大学学报(工学版), 2021, 55(4): 665-674.

Yun-long QIU,Wen-jie HU,Chang-ju WU,Wei-fang CHEN. Heat transfer performance and scale effect of hot spots in embedded microchannel cooling system. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 665-674.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.04.008        http://www.zjujournals.com/eng/CN/Y2021/V55/I4/665

图 1  实验系统示意图与测试芯片实物照片
图 2  Ti/Pt电极层的结构图
图 3  测试芯片的制造流程
图 4  微通道阵列的SEM照片
类别 参数 不确定度
直接测量量 冷却介质体积流量 ±0.5%
直接测量量 来流(环境)温度 ±0.2 K
直接测量量 小型电阻温度 ±0.42 K
直接测量量 大型电阻温度 ±0.45 K
直接测量量 压降 ±4.5%(max)
间接测量量 IC-流体总热阻 ±5.0%(max)
表 1  各测量参数的不确定度
图 5  芯片各热阻分量及其在IC-环境总热阻中的占比随微通道体积流量的变化情况
图 6  qV = 60 mL/min条件下,大尺度局部热点对模拟芯片温升的影响
图 7  在qV = 60 mL/min的条件下,大尺度局部热点对各区域当地IC-流体热阻的影响性
图 8  热点区域的热阻简化模型
图 9  qV = 60 mL/min条件下,1号芯片SHS区域热流增长引起标记区域S1~S7的温升变化量ΔT
图 10  qV = 60 mL/min条件下,1号芯片背景热流密度对小尺度局部热点区域温升变化量ΔT的影响
图 11  当背景区域热流密度为50 W/cm2,SHS区域热流密度为870 W/cm2时,小尺度局部热点与微通道相对位置对ΔT的影响
图 12  当背景区域热流密度为50 W/cm2,LHS区域热流密度为100 W/cm2时,微通道体积流量对LHS区域IC-环境温升T的影响
图 13  当背景区域热流密度为50 W/cm2,SHS区域热流密度为870 W/cm2时,微通道体积流量对1号芯片SHS区域IC-环境温升T的影响
1 TURKOT B, CARSON S, LIO A. Continuing Moore's law with EUV lithography [C]// 2017 International Electron Devices Meeting. San Francisco: IEEE, 2017: 14.4. 1-14.4. 3.
2 KIM J S, AHN J Mask materials and designs for extreme ultra violet lithography[J]. Electronic Materials Letters, 2018, 14 (5): 533- 547
doi: 10.1007/s13391-018-0058-6
3 TU K N Reliability challenges in 3D IC packaging technology[J]. Microelectronics Reliability, 2011, 51 (3): 517- 523
doi: 10.1016/j.microrel.2010.09.031
4 SHEN W W, CHEN K N Three-dimensional integrated circuit (3D IC) key technology: through-silicon via (TSV)[J]. Nanoscale Research Letters, 2017, 12 (1): 1- 9
doi: 10.1186/s11671-016-1773-2
5 BARCOHEN A Gen-3 thermal management technology: role of microchannels and nanostructures in an embedded cooling paradigm[J]. Journal of Nanotechnology in Engineering and Medicine, 2013, 4 (2): 4
6 SOHEL M S M, NIETO C C A A critical review of traditional and emerging techniques and fluids for electronics cooling[J]. Renewable and Sustainable Energy Reviews, 2017, 78 (10): 821- 833
7 TUCKERMAN D B, PEASE R F W High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2 (5): 126- 129
doi: 10.1109/EDL.1981.25367
8 SARVEY T E, ZHANG Y, CHEUNG C, et al Monolithic integration of a micropin-fin heat sink in a 28-nm FPGA[J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 2017, 7 (10): 1617- 1624
doi: 10.1109/TCPMT.2017.2740721
9 JUNG K W, ZHOU F, ASHEGHI M, et al. Experimental study of single-phase cooling with DI water in an embedded microchannels-3D manifold cooler [C]// 21st Electronics Packaging Technology Conference. Singapore: IEEE, 2019: 164-166.
10 ERP R V, SOLEIMANZADEH R, NELA L, et al Co-designing electronics with microfluidics for more sustainable cooling[J]. Nature, 2020, 585: 211- 216
doi: 10.1038/s41586-020-2666-1
11 HAO X, PENG B, XIE G, et al Efficient on-chip hotspot removal combined solution of thermoelectric cooler and mini-channel heat sink[J]. Applied Thermal Engineering, 2016, 100: 170- 178
doi: 10.1016/j.applthermaleng.2016.01.131
12 WANG P, BAO Y, BARCOHEN A Mini-contact enhanced thermoelectric coolers for on-chip hot spot cooling[J]. Heat Transfer Engineering, 2009, 30 (9): 736- 743
doi: 10.1080/01457630802678391
13 MANNO M, BAO Y, BARCOHEN A Near-junction “hot Spot” suppression with integral SiC microcontact TEC[J]. International Journal of Heat and Mass Transfer, 2017, 115: 530- 536
doi: 10.1016/j.ijheatmasstransfer.2017.07.081
14 LEE Y J, SINGH P K, LEE P S Fluid flow and heat transfer investigations on enhanced microchannel heat sink using oblique fins with parametric study[J]. International Journal of Heat and Mass Transfer, 2015, 81: 325- 336
doi: 10.1016/j.ijheatmasstransfer.2014.10.018
15 LEE Y J, LEE P S, CHOU S K Hotspot mitigating with obliquely finned microchannel heat sink-an experimental study[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3 (8): 1332- 1341
doi: 10.1109/TCPMT.2013.2244164
16 SHARMA C S, SCHLOTTIG G, BRUNSCHWILER T, et al A novel method of energy efficient hotspot-targeted embedded liquid cooling for electronics: an experimental study[J]. International Journal of Heat and Mass Transfer, 2015, 88: 684- 694
doi: 10.1016/j.ijheatmasstransfer.2015.04.047
17 SHARMA C S, TIWARI M K, ZIMMERMANN S, et al Energy efficient hotspot-targeted embedded liquid cooling of electronics[J]. Applied Energy, 2015, 138: 414- 422
doi: 10.1016/j.apenergy.2014.10.068
18 NASR M H, GREEN C E, KOTTKE P A, et al Hotspot thermal management with flow boiling of refrigerant in ultrasmall microgaps[J]. Journal of Electronic Packaging, 2017, 139 (1): 1- 8
19 WADDELL A M, PUNCH J, STAFFORD J, et al The characterization of a low-profile channel–confined jet for targeted hot-spot cooling in microfluidic applications[J]. International Journal of Heat and Mass Transfer, 2016, 101: 620- 628
doi: 10.1016/j.ijheatmasstransfer.2016.04.108
20 QIU Y L, HU W J, WU C J, et al An experimental study of microchannel and micro-pin-fin based on-chip cooling systems with silicon-to-silicon direct bonding[J]. Sensors, 2020, 20: 5533
doi: 10.3390/s20195533
[1] 张井志,陈武铠,周乃香,雷丽,梁福顺. T型微通道内液滴形成过程及长度的实验研究[J]. 浙江大学学报(工学版), 2020, 54(5): 1007-1013.
[2] 林一羽,郑旭东,吴海斌,马志鹏,金仲和. 采用恒频参量激励的微机械陀螺驱动控制方案[J]. 浙江大学学报(工学版), 2019, 53(9): 1795-1804.
[3] 卜宪标,冉运敏,王令宝,雷军民,李华山. 单井地热供暖关键因素分析[J]. 浙江大学学报(工学版), 2019, 53(5): 957-964.
[4] 金松涛,刘畅,王丽颖,杨扬. 严寒地区被动房外墙传热系数[J]. 浙江大学学报(工学版), 2019, 53(10): 1966-1976.
[5] 曹云, 席占稳, 王炅, 聂伟荣, 孔南. UV-LIGA工艺误差对MEMS万向惯性开关性能的影响[J]. 浙江大学学报(工学版), 2017, 51(9): 1815-1823.
[6] 赵庆娟, 徐杰, 单德彬, 郭斌. 基于阵列微通道的电磁成形数值模拟及实验研究[J]. 浙江大学学报(工学版), 2017, 51(1): 198-203.
[7] 沈腾, 王炅, 黄刘. 离心环境下毛细被动阀的理论与实验[J]. 浙江大学学报(工学版), 2016, 50(8): 1578-1584.
[8] 巫江虹, 薛志强, 金鹏, 李会喜. 电动汽车热泵空调微通道换热器温度分布特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1537-1544.
[9] 李小华,包伟伟,王静,李慧霞,蔡忆昔. 基于电流体动力学的LED前照灯散热[J]. 浙江大学学报(工学版), 2016, 50(7): 1284-1289.
[10] 李特, 芮执元, 雷春丽, 郭俊锋, 胡赤兵. 考虑气隙变化的高速电主轴热特性仿真[J]. 浙江大学学报(工学版), 2016, 50(5): 941-948.
[11] 王静, 蔡忆昔, 包伟伟, 李慧霞. 离子风强化大功率LED散热的实验研究[J]. 浙江大学学报(工学版), 2016, 50(10): 1952-1958.
[12] 张井志, 李蔚. 微小管径圆管气-液Taylor流动数值模拟[J]. 浙江大学学报(工学版), 2015, 49(8): 1572-1576.
[13] 向甜,王昊,蒙涛,金仲和. 三轴磁强计与MEMS陀螺的在轨实时标定方法[J]. J4, 2014, 48(3): 541-547.
[14] 林林, 吴睿, 张欣欣. 微通道热沉几何结构的多参数反问题优化[J]. J4, 2011, 45(4): 734-740.
[15] 张颂红,贠军贤,沈绍传,陈卓,姚克俭,陈纪忠. 同心管微通道内固体脂质纳米粒的制备与传质[J]. J4, 2011, 45(3): 544-550.