计算机技术、电信技术 |
|
|
|
|
嵌入式微通道传热特性及局部热点尺度效应 |
邱云龙( ),胡文杰,吴昌聚*( ),陈伟芳 |
浙江大学 航空航天学院,浙江 杭州 310027 |
|
Heat transfer performance and scale effect of hot spots in embedded microchannel cooling system |
Yun-long QIU( ),Wen-jie HU,Chang-ju WU*( ),Wei-fang CHEN |
School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China |
引用本文:
邱云龙,胡文杰,吴昌聚,陈伟芳. 嵌入式微通道传热特性及局部热点尺度效应[J]. 浙江大学学报(工学版), 2021, 55(4): 665-674.
Yun-long QIU,Wen-jie HU,Chang-ju WU,Wei-fang CHEN. Heat transfer performance and scale effect of hot spots in embedded microchannel cooling system. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 665-674.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.04.008
或
http://www.zjujournals.com/eng/CN/Y2021/V55/I4/665
|
1 |
TURKOT B, CARSON S, LIO A. Continuing Moore's law with EUV lithography [C]// 2017 International Electron Devices Meeting. San Francisco: IEEE, 2017: 14.4. 1-14.4. 3.
|
2 |
KIM J S, AHN J Mask materials and designs for extreme ultra violet lithography[J]. Electronic Materials Letters, 2018, 14 (5): 533- 547
doi: 10.1007/s13391-018-0058-6
|
3 |
TU K N Reliability challenges in 3D IC packaging technology[J]. Microelectronics Reliability, 2011, 51 (3): 517- 523
doi: 10.1016/j.microrel.2010.09.031
|
4 |
SHEN W W, CHEN K N Three-dimensional integrated circuit (3D IC) key technology: through-silicon via (TSV)[J]. Nanoscale Research Letters, 2017, 12 (1): 1- 9
doi: 10.1186/s11671-016-1773-2
|
5 |
BARCOHEN A Gen-3 thermal management technology: role of microchannels and nanostructures in an embedded cooling paradigm[J]. Journal of Nanotechnology in Engineering and Medicine, 2013, 4 (2): 4
|
6 |
SOHEL M S M, NIETO C C A A critical review of traditional and emerging techniques and fluids for electronics cooling[J]. Renewable and Sustainable Energy Reviews, 2017, 78 (10): 821- 833
|
7 |
TUCKERMAN D B, PEASE R F W High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2 (5): 126- 129
doi: 10.1109/EDL.1981.25367
|
8 |
SARVEY T E, ZHANG Y, CHEUNG C, et al Monolithic integration of a micropin-fin heat sink in a 28-nm FPGA[J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 2017, 7 (10): 1617- 1624
doi: 10.1109/TCPMT.2017.2740721
|
9 |
JUNG K W, ZHOU F, ASHEGHI M, et al. Experimental study of single-phase cooling with DI water in an embedded microchannels-3D manifold cooler [C]// 21st Electronics Packaging Technology Conference. Singapore: IEEE, 2019: 164-166.
|
10 |
ERP R V, SOLEIMANZADEH R, NELA L, et al Co-designing electronics with microfluidics for more sustainable cooling[J]. Nature, 2020, 585: 211- 216
doi: 10.1038/s41586-020-2666-1
|
11 |
HAO X, PENG B, XIE G, et al Efficient on-chip hotspot removal combined solution of thermoelectric cooler and mini-channel heat sink[J]. Applied Thermal Engineering, 2016, 100: 170- 178
doi: 10.1016/j.applthermaleng.2016.01.131
|
12 |
WANG P, BAO Y, BARCOHEN A Mini-contact enhanced thermoelectric coolers for on-chip hot spot cooling[J]. Heat Transfer Engineering, 2009, 30 (9): 736- 743
doi: 10.1080/01457630802678391
|
13 |
MANNO M, BAO Y, BARCOHEN A Near-junction “hot Spot” suppression with integral SiC microcontact TEC[J]. International Journal of Heat and Mass Transfer, 2017, 115: 530- 536
doi: 10.1016/j.ijheatmasstransfer.2017.07.081
|
14 |
LEE Y J, SINGH P K, LEE P S Fluid flow and heat transfer investigations on enhanced microchannel heat sink using oblique fins with parametric study[J]. International Journal of Heat and Mass Transfer, 2015, 81: 325- 336
doi: 10.1016/j.ijheatmasstransfer.2014.10.018
|
15 |
LEE Y J, LEE P S, CHOU S K Hotspot mitigating with obliquely finned microchannel heat sink-an experimental study[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3 (8): 1332- 1341
doi: 10.1109/TCPMT.2013.2244164
|
16 |
SHARMA C S, SCHLOTTIG G, BRUNSCHWILER T, et al A novel method of energy efficient hotspot-targeted embedded liquid cooling for electronics: an experimental study[J]. International Journal of Heat and Mass Transfer, 2015, 88: 684- 694
doi: 10.1016/j.ijheatmasstransfer.2015.04.047
|
17 |
SHARMA C S, TIWARI M K, ZIMMERMANN S, et al Energy efficient hotspot-targeted embedded liquid cooling of electronics[J]. Applied Energy, 2015, 138: 414- 422
doi: 10.1016/j.apenergy.2014.10.068
|
18 |
NASR M H, GREEN C E, KOTTKE P A, et al Hotspot thermal management with flow boiling of refrigerant in ultrasmall microgaps[J]. Journal of Electronic Packaging, 2017, 139 (1): 1- 8
|
19 |
WADDELL A M, PUNCH J, STAFFORD J, et al The characterization of a low-profile channel–confined jet for targeted hot-spot cooling in microfluidic applications[J]. International Journal of Heat and Mass Transfer, 2016, 101: 620- 628
doi: 10.1016/j.ijheatmasstransfer.2016.04.108
|
20 |
QIU Y L, HU W J, WU C J, et al An experimental study of microchannel and micro-pin-fin based on-chip cooling systems with silicon-to-silicon direct bonding[J]. Sensors, 2020, 20: 5533
doi: 10.3390/s20195533
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|