计算机技术、信息工程 |
|
|
|
|
基于双萤火虫种群并行搜索的脑效应连接网络学习方法 |
纪子龙( ),冀俊忠*( ) |
北京工业大学 多媒体与智能软件技术北京市重点实验室,北京 100124 |
|
Learning effective connectivity network structure based on parallel searching of double firefly populations |
Zi-long JI( ),Jun-zhong JI*( ) |
Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Beijing University of Technology, Beijing 100124, China |
1 |
HEIN G, MORISHIMA Y, LEIBERG S, et al The brain's functional network architecture reveals human motives[J]. Science, 2016, 351 (6277): 1074
doi: 10.1126/science.aac7992
|
2 |
FRISTON K J Functional and effective connectivity in neuroimaging: a synthesis[J]. Human Brain Mapping, 2011, 1 (1): 13
|
3 |
GOLDENBERG D, GALVáN A The use of functional and effective connectivity techniques to understand the developing brain[J]. Developmental Cognitive Neuroscience, 2015, 12: 155- 164
doi: 10.1016/j.dcn.2015.01.011
|
4 |
颜志雄, 刘勋, 谭淑平, 等 发展认知神经科学: 人脑毕生发展的功能连接组学时代[J]. 科学通报, 2016, (7): 718- 727 YAN Zhi-xiong, LIU Xun, TAN Shu-ping, et al Developmental cognitive neurosciecne: functional connectom- ics agenda for human brain lifespan development (in Chinese)[J]. Chinese Science Bulletin, 2016, (7): 718- 727
|
5 |
CHIANG S, GUINDANI M, YEH H J, et al Bayesian vector autoregressive model for multi-subject effective connectivity inference using multi-modal neuroimaging data[J]. Human Brain Mapping, 2017, 38 (3): 1311- 1332
doi: 10.1002/hbm.23456
|
6 |
赵学武. 基于群智能算法的人脑功能划分方法研究[D]. 北京: 北京工业大学, 2018. ZHAO Xue-wu. Brain functional parcellation on methods based on swarm intelligence algorithm [D]. Beijing: Beijing University of Technology, 2018.
|
7 |
IDE J S, ZHANG S, LI C S R Bayesian network models in brain functional connectivity analysis[J]. International Journal of Approximate Reasoning Official Publication of the North American Fuzzy Information Processing Society, 2014, 55 (1): 23- 35
|
8 |
JI J, LIU J, LIANG P, et al Learning effective connectivity network structure from fMRI data based on artificial immune algorithm[J]. Plos One, 2016, 11 (4): e0152600
doi: 10.1371/journal.pone.0152600
|
9 |
LIU J, JI J, ZHANG A, et al. An ant colony optimization algorithm for learning brain effective connectivity network from fMRI data [C] // IEEE International Conference on Bioinformatics and Biomedicine. Shenzhen: IEEE, 2016: 360-367.
|
10 |
纪子龙, 冀俊忠, 刘金铎, 等. 基于萤火虫算法的脑效应连接网络学习方法[J]. 哈尔滨工业大学学报, 2019, 51(5): 82-90. JI Zi-long, JI Jun-zhong, LIU Jin-duo, et al. Learning effective connectivity network structure based on firefly algorithm [J]. Journal of Harbin Institute of Technology, 2019, 51(5): 82-90.
|
11 |
SMITH S M, MILLER K L, SALIMI-KHORSHIDI G, et al Network modeling methods for FMRI[J]. Neuroimage, 2011, 54 (2): 875- 891
doi: 10.1016/j.neuroimage.2010.08.063
|
12 |
HUANG S, LI J, YE J, et al A sparse structure learning algorithm for Gaussian Bayesian network identification from high-dimensional data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (6): 1328- 1342
doi: 10.1109/TPAMI.2012.129
|
13 |
CHICKERING D M Optimal structure identification with greedy search[J]. The Journal of Machine Learning Research, 2003, 3 (3): 507- 554
|
14 |
XU L, FAN T, WU X, et al A pooling-LiNGAM algorithm for effective connectivity analysis of fMRI data[J]. Frontiers in Computational Neuroscience, 2014, 8 (8): 125
|
15 |
BARNETT L, SETH A K The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference[J]. Journal of Neuroscience Methods, 2014, 223: 50- 68
doi: 10.1016/j.jneumeth.2013.10.018
|
16 |
DAUWELS J, VIALATTE F, MUSHA T, et al A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG[J]. Neuroimage, 2010, 49 (1): 668- 693
doi: 10.1016/j.neuroimage.2009.06.056
|
17 |
PATEL R S, BOWMAN D B, RILLING J K A Bayesian approach to determining connectivity of the human brain[J]. Human Brain Mapping, 2010, 27 (3): 267- 276
|
18 |
WU X, LI R, FLEISHER A S, et al Altered default mode network connectivity in Alzheimer’s disease: aresting functional MRI and Bayesian network study[J]. Human Brain Mapping, 2011, 32 (11): 1868- 1881
doi: 10.1002/hbm.21153
|
19 |
韩利坤, 姚婧璠, 李越秀, 等 阿尔茨海默病静息态默认模式网络研究[J]. 中国医刊, 2014, (9): 46- 50 HAN Li-kun, YAO Jing-pan, LI Yue-xiu, et al Research the default in patients with Alzheimer's disease at resting state[J]. Chinese Journal of Medicine, 2014, (9): 46- 50
doi: 10.3969/j.issn.1008-1070.2014.09.016
|
20 |
GROSSMAN M, KOENIG P, GLOSSER G, et al Neural basis for semantic memory difficulty in Alzheimer's disease: an fMRI study[J]. Brain A Journal of Neurology, 2003, 126 (2): 292- 311
doi: 10.1093/brain/awg027
|
21 |
周鹏, 朱浩泽, 倪红艳, 等 阿尔茨海默症患者额顶叶控制系统脑网络异常[J]. 科学通报, 2016, 61 (32): 3490 ZHOU Peng, ZHOU Hao-ze, NI Hong-yan, et al The abnorm- ality of frontal-parietal control system in Alzheimer’s disease[J]. Chinese Science Bulletin, 2016, 61 (32): 3490
doi: 10.1360/N972015-01273
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|