计算机技术、信息工程 |
|
|
|
|
基于自适应阈值的DDoS攻击态势预警模型 |
罗逸涵1( ),程杰仁1,2,*( ),唐湘滟1,欧明望1,王天1 |
1. 海南大学 计算机与网络空间安全学院,海南 海口 570228 2. 海南大学 南海海洋资源利用国家重点实验室,海南 海口 570228 |
|
Early warning model of DDoS attack situation based on adaptive threshold |
Yi-han LUO1( ),Jie-ren CHENG1,2,*( ),Xiang-yan TANG1,Ming-wang OU1,Tian WANG1 |
1. School of Computer and Cyberspace Security, Hainan University, Haikou 570228, China 2. State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China |
引用本文:
罗逸涵,程杰仁,唐湘滟,欧明望,王天. 基于自适应阈值的DDoS攻击态势预警模型[J]. 浙江大学学报(工学版), 2020, 54(4): 704-711.
Yi-han LUO,Jie-ren CHENG,Xiang-yan TANG,Ming-wang OU,Tian WANG. Early warning model of DDoS attack situation based on adaptive threshold. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 704-711.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.04.009
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I4/704
|
1 |
PRAS A, SANTANNA J, STEINBERGER J. DDoS 3.0: how terrorists bring down the internet [M]. New York: Springer, 2016: 1-4.
|
2 |
PALMIERI F, RICCIARDI S, FIORE U, et al Energy-oriented denial of service attacks: an emerging menace for large cloud infrastructures[J]. Journal of Supercomputing, 2015, 71 (5): 1620- 1641
doi: 10.1007/s11227-014-1242-6
|
3 |
CNOERT/CC. 2017 China Internet cyber security report [EB/OL]. 2018-08-02. http://www.cert.org.cn/publish/main/17/index.html.
|
4 |
XIANG Y, LI K, ZHOU W Low-rate DDoS attacks detection and trace back by using new information metrics[J]. IEEE Transactions on Information Forensics and Security, 2011, 6 (2): 426- 437
doi: 10.1109/TIFS.2011.2107320
|
5 |
LI K, ZHOU W, LI P, et al. Distinguishing DDoS attacks from flash crowds using probability metrics [C]// International Conference on Network and System Security. Gold Coast, Queensland, Australia: IEEE, 2009: 9-17.
|
6 |
CHENG J, ZHOU J, LIU Q, et al A DDoS detection method for socially aware networking based on forecasting fusion feature sequence[J]. The Computer Journal, 2018, 61 (7): 959- 970
doi: 10.1093/comjnl/bxy025
|
7 |
CHENG J, XU R, TANG X, et al An abnormal network flow feature sequence prediction approach for DDoS attacks detection in big data environment[J]. Computers, Materials and Continua, 2018, 55 (1): 95- 119
|
8 |
TOKLU S, ?IM?EK M Two-layer approach for mixed high-rate and low-rate distributed denial of service (DDoS) attack detection and filtering[J]. Arabian Journal for Science and Engineering, 2018, 43 (12): 7923- 7931
doi: 10.1007/s13369-018-3236-9
|
9 |
KESAVAMOORTHY R, SOUNDAR K R Swarm intelligence based autonomous DDoS attack detection and defense using multi agent system[J]. Cluster Computing, 2018, 22 (1): 1- 8
|
10 |
HOQUE N, KASHYAP H, BHATTACHARYYA D K Real-time DDoS attack detection using FPGA[J]. Computer Communications, 2017, 110: 48- 58
|
11 |
WANG D, ZHANG Z, WANG P, et al. Targeted online password guessing: an underestimated threat [C]// 2016 ACM SIGSAC Conference on Computer and Communications Security. Vienna: ACM, 2016: 1242-1254..
|
12 |
DING W, PING W. On the implications of Zipf’s law in passwords [C]// European Symposium on Research in Computer Security. Heraklion, Greece: Springer, 2016.
|
13 |
XYLOGIANNOPOULOS K, KARAMPELAS P, ALHAJJ R. Early DDoS detection based on data mining techniques [C]// 8th IFIP WG 11.2 International Workshop on Information Security Theory and Practice. Crete: Springer, 2014: 190-199.
|
14 |
LIU Q, YIN J, CAI Z, et al. A novel threat assessment method for DDoS early warning using network vulnerability analysis [C]// 4th International Conference on Network and System Security. Melbourne: IEEE, 2010: 70-74.
|
15 |
LIU C, ZHANG S. A bidirectional-based DDoS detection mechanism [C]// 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing. Beijing: IEEE, 2009: 1-4.
|
16 |
XIAO B, CHEN W, HE Y A novel approach to detecting DDoS attacks at an early stage[J]. Journal of Supercomputing, 2006, 36 (3): 235- 248
doi: 10.1007/s11227-006-8295-0
|
17 |
YI Z, YAO S J, WANG L Researches on brittle seam mining based situation assessment and prediction mechanism of DDoS attacks in cloud computing platform[J]. Applied Mechanics and Materials, 2014, 519-520: 262- 270
doi: 10.4028/www.scientific.net/AMM.519-520.262
|
18 |
LIU Z, ZHANG B, ZHU N, et al. Hierarchical network threat situation assessment method for DDoS based on D-S evidence theory [C]// IEEE International Conference on Intelligence and Security Informatics. Beijing: IEEE, 2017: 49-53.
|
19 |
LIU X Analysis on early warning technology of network security situational awareness[J]. Journal of Science and Technology Monthly, 2016, 29 (13): 132- 133
|
20 |
龚俭, 臧小东, 苏琪, 等 网络安全态势感知综述[J]. 软件学报, 2017, 28 (4): 1010- 1026 GONG Jian, ZANG Xiao-dong, SU Qi, et al Overview of network security situational awareness[J]. Journal of Software, 2017, 28 (4): 1010- 1026
|
21 |
胡浩, 叶润国, 张红旗, 等 基于攻击预测的网络安全态势量化方法[J]. 通信学报, 2017, 38 (10): 122- 134 HU Hao, YE Run-guo, ZHANG Hong-qi, et al Quantitative method of network security situation based on attack prediction[J]. Journal on Communications, 2017, 38 (10): 122- 134
doi: 10.11959/j.issn.1000-436x.2017204
|
22 |
CHENG J, LIU B, CAI K, et al ETC intelligent navigation path planning method[J]. Journal of Internet Technology, 2018, 19 (2): 619- 631
|
23 |
HU H. Network intrusion detection, early warning and security management technology (strategic early warning) (2001AA142030) [R]. 长沙: 国防科技大学, 2003.
|
24 |
NASHAT D, JIANG X, KAMEYAMA M Group testing based detection of web service DDoS attackers[J]. IEICE Transactions on Communications, 2010, 93-B (5): 1113- 1121
|
25 |
AGOSTA J M, WASSER C D, CHANDRASHEKAR J, et al. An adaptive anomaly detector for worm detection [C]// Proceedings of the 2nd USENIX Workshop on Tackling Computer Systems Problems with Machine Learning Techniques. Renton: [s.n.], 2007: 1-6.
|
26 |
XIA Z, LU S, LI J Adaptive detection method for abnormal traffic based on self-similarity[J]. Computer Engineering, 2010, 35 (5): 23- 25
|
27 |
SUN Z, TANG Y, CHENG Y, et al Abnormal traffic detection of router based on improved CUSUM algorithm[J]. Journal of Software, 2005, 16 (12): 2117- 2123
doi: 10.1360/jos162117
|
28 |
LINCOLN Laboratory. DARPA intrusion detection evaluation data set [EB/OL]. [2019-01-20]. https://www.ll.mit.edu/ideval/data/1999data.html.
|
29 |
LINCOLN Laboratory. DARPA intrusion detection scenario specific data sets [EB/OL]. [2019-01-20]. https://www.ll.mit.edu/ideval/data/2000data.html.
|
30 |
程杰仁, 罗逸涵, 唐湘滟, 等 基于LSTM流量预测的DDoS攻击检测方法[J]. 华中科技大学学报: 自然科学版, 2019, 47 (4): 32- 36 CHENG Jie-ren, LUO Yi-han, TANG Xiang-yan, et al DDoS attack detection method based on LSTM traffic prediction[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2019, 47 (4): 32- 36
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|