Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (12): 2412-2422    DOI: 10.3785/j.issn.1008-973X.2019.12.020
动力与电气工程     
基于测量波阻抗的同杆双回输电线路故障识别
叶睿恺(),吴浩*(),董星星
四川轻化工大学 自动化与信息工程学院,四川 自贡 643000
Fault identification of double-circuit transmission lines on same tower based on measuring wave impedance
Rui-kai YE(),Hao WU*(),Xing-xing DONG
Automation and Electronic Information Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
 全文: PDF(1189 KB)   HTML
摘要:

为提高行波保护在同杆双回输电线路上的灵敏性与可靠性,提出一种基于S变换的测量波阻抗比率制动故障识别算法. 利用S变换获取母线电压与线路电流的初始行波相量,据此计算线路测量波阻抗,给出和波阻抗与差波阻抗概念,引入综合和波阻抗和综合差波阻抗. 理论分析表明:当发生区内故障时,综合和波阻抗小于综合差波阻抗;当发生区外故障时,综合和波阻抗远大于综合差波阻抗. 引入比率制动系数,将综合和波阻抗作为制动量,综合差波阻抗作为动作量,建立比率制动保护判据进行区内、外故障识别. 大量仿真结果表明,该算法判据简单,性能可靠,动作灵敏、迅速,基本不受故障初始角、故障类型、过渡电阻、噪声干扰等因素影响.

关键词: 同杆双回输电线路测量波阻抗变换综合和波阻抗综合差波阻抗故障识别    
Abstract:

An algorithm for measuring wave impedance ratio braking fault identification was proposed based on S-transform, in order to improve the sensitivity and reliability of traveling wave protection on double-circuit transmission lines. S-transform was implemented to obtain the initial traveling wave phasor of the voltage of the busbar and the current of the transmission lines. Hereby, the measuring wave impedance of transmission line was calculated and the concepts of synthetical wave sum-impedance and synthetical wave differ-impedance were given. The theoretical analysis showed that, when an internal fault occured, the synthetical wave sum-impedance was smaller than the synthetical wave differ-impedance; when an external fault occured, the synthetical wave sum-impedance was much larger than the synthetical wave differ-impedance. The ratio braking coefficient was introduced, the synthetical wave sum-impedance was used as braking amount and the synthetical wave differ-impedance was taken as actuating amount, and the ratio braking protection criterion was established to identify internal and external faults. A large number of simulation results show that the algorithm has advantages of simple criterion, reliable performance, sensitive and quick response, and is less susceptible to the changes in initial fault angles, fault types, transitional resistances, and other factors.

Key words: double-circuit transmission lines on same tower    measuring wave impedance S-transform    synthetical wave sum-impedance    synthetical wave differ-impedance    fault identification
收稿日期: 2018-10-05 出版日期: 2019-12-17
CLC:  TM 773  
基金资助: 国家自然科学基金资助项目(11705122);四川省科技厅科技计划资助项目(2017JY0338);人工智能四川省重点实验室资助项目(2015RYY01,2017RYY02);四川理工学院研究生创新基金资助项目(y2017032,y2017033)
通讯作者: 吴浩     E-mail: pokagic@163.com;wuhao801212@163.com
作者简介: 叶睿恺(1992—),男,硕士生,从事电力系统保护与控制研究. orcid.org/0000-0003-0609-4020. E-mail: pokagic@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
叶睿恺
吴浩
董星星

引用本文:

叶睿恺,吴浩,董星星. 基于测量波阻抗的同杆双回输电线路故障识别[J]. 浙江大学学报(工学版), 2019, 53(12): 2412-2422.

Rui-kai YE,Hao WU,Xing-xing DONG. Fault identification of double-circuit transmission lines on same tower based on measuring wave impedance. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2412-2422.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.12.020        http://www.zjujournals.com/eng/CN/Y2019/V53/I12/2412

图 1  同杆双回输电线路简化模型
图 2  同杆双回线路区内故障彼得逊等值电路模型
图 3  同杆双回线路区外故障彼得逊等值电路模型
图 4  线路区内故障M端行波波形(不含噪声)
图 5  线路区内故障M端行波波形(含噪声)
图 6  同杆双回线路故障识别算法流程
序号 故障类型 l / km $\theta \,/\,(^ \circ )$ ${R_{\rm{T}}}$ / Ω ${K_{\rm{s} } }\left| { {Z_{\rm{sM} } } } \right|\,/\,({10^3}\;\Omega )$ $\left| { { { {Z} }_{ {\rm{dM} } } } } \right|\,/\,(1{0^4}\;\Omega )$ ${ { {K} }_{\rm{s} } }\left| { { { {Z} }_{ {\rm{sN} } } } } \right|\,/\,({10^3}\;\Omega )$ $\left| { { { {Z} }_{ {\rm{dN} } } } } \right|\,/\,(1{0^4}\;\Omega )$ 判断结果
1 ⅡBGG 100 90 200 1.156 1.089 1.223 1.078 区内故障
ⅠBCG 100 90 200 1.157 1.089 1.223 1.078
ⅠBCⅡAG 100 90 200 1.157 1.089 1.223 1.078
2 ⅡBGG 200 8 500 1.115 1.103 1.098 1.105 区内故障
ⅠBCG 200 8 500 1.115 1.103 1.097 1.105
ⅠBCⅡAG 200 8 500 1.115 1.103 1.097 1.105
3 ⅠAⅡBG 150 8 50 1.087 1.110 1.087 1.110 区内故障
ⅠAⅡBG 150 15 50 1.114 1.105 1.114 1.105
ⅠAⅡBG 150 45 50 1.087 1.110 1.087 1.110
ⅠAⅡBG 150 90 50 1.087 1.110 1.087 1.110
ⅠAⅡBG 150 120 50 1.159 1.088 1.159 1.088
4 ⅠABCⅡA 200 8 ? 1.087 1.110 1.087 1.110 区内故障
ⅠABCⅡA 200 15 ? 1.114 1.105 1.114 1.105
ⅠABCⅡA 200 45 ? 1.087 1.110 1.087 1.110
ⅠABCⅡA 200 90 ? 1.098 1.105 1.098 1.105
ⅠABCⅡA 200 120 ? 1.098 1.105 1.098 1.105
5 ⅡACG 250 45 0 1.087 1.112 1.106 1.101 区内故障
ⅡACG 250 45 100 1.103 1.108 1.087 1.107
ⅡACG 250 45 300 1.105 1.107 1.085 1.108
ⅡACG 250 45 600 1.105 1.107 1.084 1.108
表 1  同杆双回线路内部故障时算法性能测试结果
序号 故障类型 l / km $\theta \,/\,( ^ \circ )$ ${R_{\rm{T}}}$ / Ω ${{{K}}_{\rm{s}}}\left| {{Z_{\rm{sM} }}} \right|\,/\,({10^3}\;\Omega )$ $\left| {{{{Z}}_{{\rm{dM}}}}} \right|\,/\,(1{0^{ - 9}}\;\Omega )$ ${{{K}}_{\rm{s}}}\left| {{{{Z}}_{{\rm{sN}}}}} \right|\,/\,({10^3}\;\Omega )$ $\left| {{{{Z}}_{{\rm{dN}}}}} \right|\,/\,(1{0^{ - 9}}\;\Omega )$ 判断结果
1 CG 50 15 200 8.992 12.464 4.402 0.109 区外故障
BCG 50 15 200 9.055 0.135 4.396 0.208
ABCG 50 15 200 8.994 0.122 4.396 0.168
2 CG 100 120 500 8.253 0.396 4.402 2.249 区外故障
BCG 100 120 500 8.257 0.360 4.402 0.126
ABCG 100 120 500 8.257 0.110 4.402 0.138
3 AG 50 8 100 8.978 6.865 4.402 0.253 区外故障
AG 50 15 100 8.995 2.353 4.402 0.260
AG 50 45 100 9.014 0.252 4.402 0.195
AG 50 90 100 9.038 1.256 4.402 0.183
AG 50 120 100 9.007 1.411 4.401 0.244
4 AC 100 8 ? 8.184 2.354 4.402 0.152 区外故障
AC 100 15 ? 8.208 4.916 4.402 0.259
AC 100 45 ? 8.405 2.649 4.402 0.024
AC 100 90 ? 8.407 0.430 4.402 0.023
AC 100 120 ? 8.361 0.353 4.401 0.071
5 BG 50 45 0 9.050 1.126 4.406 0.069 区外故障
BG 50 45 100 9.045 3.267 4.406 0.423
BG 50 45 300 9.040 13.983 4.406 0.617
BG 50 45 600 9.037 12.736 4.406 5.109
表 2  同杆双回线路外部故障时算法性能测试结果
故障情况 丢失数据 $k$ ${ { {K} }_{\rm{s} } }\left| { {Z_{\rm{sM} } } } \right|\,/\,({10^3}\;\Omega )$ $\left| {{{{Z}}_{{\rm{dM}}}}} \right|/\Omega $ ${ { {K} }_{\rm{s} } }\left| { { { {Z} }_{ {\rm{sN} } } } } \right|\,/\,({10^3}\;\Omega )$ $\left| {{{{Z}}_{{\rm{dN}}}}} \right|/\Omega $ 判断结果
故障一:
ⅠBCⅡA
l=100 km
θ=90°
RT=200 Ω
0 1.157 $1.089 \times 1{0^4}$ 1.222 $1.078 \times 1{0^4}$ 区内故障
电压 峰值 $1.100$ $1.034 \times 1{0^4}$ $1.222$ $1.078 \times 1{0^4}$
电流 峰值 $1.208$ $1.071 \times 1{0^4}$ $1.222$ $1.078 \times 1{0^4}$
电压&电流 峰值 $1.100$ $1.034 \times 1{0^4}$ $1.222$ $1.078 \times 1{0^4}$
故障二:
ⅠAG
l=100 km
θ=45°
RT=100 Ω
0 $1.156$ $1.089 \times 1{0^4}$ $1.223$ $1.078 \times 1{0^4}$ 区内故障
电压 5 $0.925$ $8.710 \times 1{0^3}$ $1.223$ $1.078 \times 1{0^4}$ 区内故障
10 $0.635$ $5.993 \times 1{0^3}$ $1.223$ $1.078 \times 1{0^4}$
15 $0.288$ $2.727 \times 1{0^3}$ $1.223$ $1.078 \times 1{0^4}$
电流 5 $1.413$ $9.995 \times 1{0^3}$ $1.223$ $1.078 \times 1{0^4}$ 区内故障
10 $1.675$ $9.103 \times 1{0^3}$ $1.223$ $1.078 \times 1{0^4}$
15 $1.937$ $8.219 \times 1{0^3}$ $1.223$ $1.078 \times 1{0^4}$
电压&电流 5 $1.020$ $7.636 \times 1{0^3}$ $1.223$ $1.078 \times 1{0^4}$ 区内故障
10 $0.888$ $4.380 \times 1{0^3}$ $1.223$ $1.078 \times 1{0^4}$
15 $0.444$ $2.191 \times 1{0^3}$ $1.223$ $1.078 \times 1{0^4}$
故障三:
ABG
l=100 km
θ=90°
RT=300 Ω
无丢失 0 $8.407$ $4.879 \times 1{0^{ - 10}}$ $4.402$ $6.924 \times 1{0^{ - 12}}$ 区外故障
电压 5 $6.254$ $3.133 \times 1{0^{ - 10}}$ $4.402$ $6.924 \times 1{0^{ - 12}}$ 区外故障
10 $4.191$ $2.658 \times 1{0^{ - 10}}$ $4.402$ $6.924 \times 1{0^{ - 12}}$
15 $2.053$ $7.013 \times 1{0^{ - 11}}$ $4.402$ $6.924 \times 1{0^{ - 12}}$
电流 5 $6.306$ $3.755 \times 1{0^{ - 10}}$ $4.402$ $1.526 \times 1{0^{ - 11}}$ 区外故障
10 $4.220$ $2.519 \times 1{0^{ - 10}}$ $4.402$ $1.526 \times 1{0^{ - 11}}$
15 $2.069$ $9.998 \times 1{0^{ - 11}}$ $4.402$ $1.526 \times 1{0^{ - 11}}$
电压&电流 5 $6.302$ $3.724 \times 1{0^{ - 10}}$ $4.402$ $6.924 \times 1{0^{ - 12}}$ 区外故障
10 $4.205$ $2.296 \times 1{0^{ - 10}}$ $4.402$ $6.924 \times 1{0^{ - 12}}$
15 $2.478$ $1.122 \times 1{0^{ - 10}}$ $4.402$ $6.924 \times 1{0^{ - 12}}$
表 3  同杆双回线路行波采样信息丢失保护算法性能测试结果
故障情况 SNR/dB ${ { {K} }_{\rm{s} } }\left| { {Z_{\rm{sM} } } } \right|/({10^3}\;\Omega )$ $\left| { { { {Z} }_{ {\rm{dM} } } }} \right|/({10^3}\;\Omega )$ ${ { {K} }_{\rm{s} } }\left| { { { {Z} }_{ {\rm{sN} } } }} \right|/({10^3}\;\Omega )$ $\left| { { { {Z} }_{ {\rm{dN} } } }} \right|/({10^3}\;\Omega )$ 判断结果
ⅠAⅡBG
l=150 km
θ=90°
RT=50 Ω
10 $2.851$ $3.649$ $1.834$ $8.220$ 区内故障
20 $2.548$ $7.176$ $2.400$ $14.310$
30 $1.110$ $9.840$ $0.892$ $10.599$
40 $0.949$ $10.756$ $0.981$ $11.227$
50 $1.055$ $10.853$ $1.146$ $11.057$
60 $1.135$ $11.154$ $1.127$ $11.202$
表 4  不同强度噪声对同杆双回线路内部故障影响的测试结果
1 毕天姝, 李伟, 徐振宇, 等 基于单端单回线电气量的同杆双回线单相接地距离保护[J]. 电力系统自动化, 2013, 37 (7): 88- 93
BI Tian-shu, LI Wei, XU Zhen-yu, et al Single-phase grounding distance protection of parrallel transmission lines on same poles based on electric quantities data from single terminal and single line[J]. Automation of Electric Power Systems, 2013, 37 (7): 88- 93
doi: 10.7500/AEPS201111087
2 RAMAR K, LOW H S, EGU E E. One-end impedance based fault location in double-circuit transmission lines with different configurations[J]. Electrical Power and Energy Systems, 2015, 64 (1): 1159- 1165
3 李伟, 毕天姝, 杨奇逊 基于相关分析的同杆双回线突变量选相新方法[J]. 电力系统自动化, 2011, 35 (8): 58- 62
LI Wei, BI Tian-shu, YANG Qi-xun Fault phase selection with component in same-tower double-circuit lines based on correlation analysis[J]. Automation of Electric Power Systems, 2011, 35 (8): 58- 62
4 刘千宽, 黄少锋, 王兴国 同杆并架双回线基于电流突变量的综合选相[J]. 电力系统自动化, 2007, 31 (21): 53- 57
LIU Qian-kuan, HUANG Shao-feng, WANG Xing-guo Phase selector based on fault component current for double-circuit transmission lines on single tower[J]. Automation of Electric Power Systems, 2007, 31 (21): 53- 57
doi: 10.3321/j.issn:1000-1026.2007.21.012
5 李小鹏, 何正友, 夏璐璐 同杆双回输电线路的固有频率测距算法[J]. 电力系统自动化, 2011, 35 (12): 47- 51
LI Xiao-peng, HE Zheng-you, XIA Lu-lu Natural frequencies based fault location algorithm for parallel transmission lines on the same tower[J]. Automation of Electric Power Systems, 2011, 35 (12): 47- 51
6 张子衿, 丛伟, 肖静, 等 含同杆双回线的输电网零序反时限过流保护加速配合方案[J]. 电力自动化设备, 2017, 37 (9): 159- 165
ZHANG Zi-jin, CONG Wei, XIAO Jing, et al Acceleration scheme of zero-sequence inverse-time overcurrent protection for double-circuit lines on same tower[J]. Electric Power Automation Equipment, 2017, 37 (9): 159- 165
7 蔡国伟, 周国屏, 李凌 基于同步相量测量的同杆双回路继电保护方案的研究[J]. 电力自动化设备, 2007, 27 (6): 56- 59
CAI Guo-wei, ZHOU Guo-ping, LI Ling Protection scheme for double-line with same pole based on synchronized phasor measurement[J]. Electric Power Automation Equipment, 2007, 27 (6): 56- 59
doi: 10.3969/j.issn.1006-6047.2007.06.013
8 张武军, 何奔腾, 洪光辉, 等 同杆并架双回线路行波差动保护[J]. 电力系统自动化, 2008, 32 (17): 66- 71
ZHANG Wu-jun, HE Ben-teng, HONG Guang-hui, et al Traveling-wave differential relay scheme for double-circuit parallel lines on the same pole[J]. Automation of Electric Power Systems, 2008, 32 (17): 66- 71
doi: 10.3321/j.issn:1000-1026.2008.17.014
9 范春菊, 郁惟镛 基于横差模电流暂态能量的同杆双回线保护方案[J]. 电网技术, 2006, 30 (17): 69- 74
FAN Chun-ju, YU Wei-yong Protection scheme for double lines on same tower based on transient energy of modal differential transervese current[J]. Power System Technology, 2006, 30 (17): 69- 74
10 EISSA M M, MASOUD M A novel digital distance relaying technique for transmission line protection[J]. IEEE Transon Power Delivery, 2001, 16 (3): 380- 384
doi: 10.1109/61.924814
11 张海, 黄少锋 一种适用于低线间距的同杆双回线跨线故障等值算法[J]. 电力系统保护与控制, 2012, 40 (20): 56- 61
ZHANG Hai, HUANG Shao-feng An inter line fault equivalent algorithm for common-tower double-transmission line with narrow line-to-line distance[J]. Power System Protection and Control, 2012, 40 (20): 56- 61
doi: 10.7667/j.issn.1674-3415.2012.20.010
12 李小鹏, 滕予非, 刘耀, 等 基于测量波阻抗的高压直流输电线路纵联保护[J]. 电网技术, 2017, 41 (2): 617- 623
LI Xiao-peng, TENG Yu-fei, LIU Yao, et al Pilot protection based on measure surge impedance for HVDC transmission lines[J]. Power System Technology, 2017, 41 (2): 617- 623
13 刘兴茂, 林圣, 何正友, 等 基于S变换的新型波阻抗方向继电器[J]. 中国电机工程学报, 2013, 33 (22): 113- 119
LIU Xing-mao, LIN Sheng, HE Zheng-you, et al A novel surge impedance directional relay based on S Transform[J]. Proceeding of the CSEE, 2013, 33 (22): 113- 119
14 刘兴茂, 林圣, 何正友, 等 基于S变换的行波相位比较式方向继电器[J]. 电网技术, 2014, 38 (3): 744- 749
LIU Xing-mao, LIN Sheng, HE Zheng-you, et al S-transform based travelling wave phase comparison directional relay[J]. Power System Technology, 2014, 38 (3): 744- 749
15 施慎行, 董新洲, 周双喜 单相接地故障行波分析[J]. 电力系统自动化, 2005, 29 (23): 29- 32+53
SHI Shen-xing, DONG Xin-Zhou, ZHOU Shuang-xi Analysis of single-phase-to-ground fault generated traveling waves[J]. Automation of Electric Power Systems, 2005, 29 (23): 29- 32+53
doi: 10.3321/j.issn:1000-1026.2005.23.006
16 吴浩, 李群湛, 刘炜 输电线路功率型行波纵联保护新方法[J]. 电力系统自动化, 2016, 40 (2): 107- 113
WU Hao, LI Qun-zhan, LIU Wei A new pilot protection algorithm based on traveling wave power for transmission lines[J]. Automation of Electric Power Systems, 2016, 40 (2): 107- 113
doi: 10.7500/AEPS20150622005
17 叶睿恺, 吴浩, 董星星 基于初始行波相位差的同杆双回输电线路故障识别[J]. 电力系统保护与控制, 2019, 47 (03): 118- 128
YE Rui-kai, WU Hao, DONG Xing-xing Fault identification of double lines on same tower based on phase difference of initial traveling wave[J]. Power System Protection and Control, 2019, 47 (03): 118- 128
18 孔令号, 焦彦军, 戴志辉, 等 比率制动电荷量线路差动保护[J]. 电力系统自动化, 2014, 38 (24): 91- 95
KONG Ling-hao, JIAO Yan-jun, DAI Zhi-hui, et al Ratio-restraining differential protection of lines based on charge[J]. Automation of Electric Power Systems, 2014, 38 (24): 91- 95
doi: 10.7500/AEPS20130726001
19 李晓华, 张哲, 尹项根, 等 故障分量比率差动保护整定值的选取[J]. 电网技术, 2001, 25 (4): 47- 50
LI Xiao-hua, ZHANG Zhe, YIN Xiang-gen, et al Selection of settings of differential protection based on fault component[J]. Power System Technology, 2001, 25 (4): 47- 50
doi: 10.3321/j.issn:1000-3673.2001.04.013
[1] 曾凌霄,刘宏伟,李伟,林勇刚,顾亚京. 基于变桨系统的功率与载荷双目标协同控制[J]. 浙江大学学报(工学版), 2021, 55(4): 750-756.
[2] 朱凯,王云鹤,秦雪薇,黄亚东,王强,吴珂. 升温速率对沥青燃烧和气态产物释放特性的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1805-1811.
[3] 冉树浩,胡玉龙,杨元维,高贤君,李熙,陈明珠. 基于样本形态变换的高分遥感影像建筑物提取[J]. 浙江大学学报(工学版), 2020, 54(5): 996-1006.
[4] 费云,蒙涛,金仲和. 皮纳卫星姿控系统分层式故障检测[J]. 浙江大学学报(工学版), 2020, 54(4): 824-832.
[5] 吴君涛,王奎华,刘鑫,孙梵. 基于既有桩基振动理论反演的桩周土动态响应解[J]. 浙江大学学报(工学版), 2020, 54(3): 521-528.
[6] 于露,金龙哲,徐明伟,刘建国. 基于HHT分解光电容积脉搏波信号的人体血液流变信息评估[J]. 浙江大学学报(工学版), 2020, 54(2): 340-347.
[7] 李红光,郭英,眭萍,齐子森. 基于时频特征的卷积神经网络跳频调制识别[J]. 浙江大学学报(工学版), 2020, 54(10): 1945-1954.
[8] 孙曙光,田朋,杜太行,王景芹. 基于apFFT-AMD的密集频率谐波/间谐波检测[J]. 浙江大学学报(工学版), 2020, 54(1): 178-188.
[9] 谭芳芳,朱俊江,严天宏,高志强,何岭松. 基于GA-WPT-ELM的6061铝合金表面粗糙度预测[J]. 浙江大学学报(工学版), 2020, 54(1): 40-47.
[10] 李竟成,吴越,胡斯登,石健将. 基于递推最小二乘法与核密度估计的同步整流Boost变换器回流功率抑制[J]. 浙江大学学报(工学版), 2020, 54(1): 169-177.
[11] 刘炜, 王聪华, 赵尔平, 雒伟群. 基于背景类别分层分离的不透水面间接提取——以兰州城关区EO-1 ALI图像为例[J]. 浙江大学学报(工学版), 2019, 53(1): 137-145.
[12] 张承志, 冯华君, 徐之海, 李奇, 陈跃庭. 图像噪声方差分段估计法[J]. 浙江大学学报(工学版), 2018, 52(9): 1804-1810.
[13] 董辉跃, 吴杨宝, 郭英杰, 李少波, 罗水均. 机器人精镗飞机交点孔的颤振分析与识别[J]. 浙江大学学报(工学版), 2018, 52(8): 1517-1525.
[14] 刘承斌, 刘文耀, 陈伟球, 王惠明, 吕朝锋. 基于L-S理论的压电球壳广义热冲击分析[J]. 浙江大学学报(工学版), 2018, 52(6): 1185-1193.
[15] 葛云龙, 陈自强, 郑昌文. UTSTF锂离子电池时变参数估计与故障诊断[J]. 浙江大学学报(工学版), 2018, 52(6): 1223-1230.