Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (9): 1805-1814    DOI: 10.3785/j.issn.1008-973X.2019.09.020
通信技术、电气工程     
WIFI融合网络新型接入点部署方案
吴端坡1(),孔正宇1,岑曙炜2,金心宇3,*()
1. 杭州电子科技大学 通信工程学院,浙江 杭州 310018
2. 中国移动通信集团浙江有限公司 杭州分公司,浙江 杭州 310006
3. 浙江大学 信息与电子工程学系,浙江 杭州 310027
Novel access point deployment method in WIFI convergence network
Duan-po WU1(),Zheng-yu KONG1,Shu-wei CEN2,Xin-yu JIN3,*()
1. School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
2. China Mobile Communications Group Zhejiang Co., Ltd. Hangzhou Branch, Hangzhou 310006, China
3. Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(862 KB)   HTML
摘要:

为了充分利用免许可频段,减轻蜂窝网络压力,提高用户吞吐量,针对WIFI融合网络中无线接入点(AP)部署方式,提出基于优先级划分的AP部署方案. 通过分析AP与小基站(SBS)覆盖范围特点,将AP划分为高优先级的专属AP与低优先级的共享AP. 针对提出的部署方案,设计业务卸载、资源共享、混合模式3种AP资源调度方式. 动态分析WIFI融合网络在未饱和、半饱和、饱和3种工作状态下的整体性能. 结果表明: 与传统的AP部署方案相比,提出的方案在未饱和状态下用户平均吞吐量的性能提升了3% ~10%,在半饱和状态下平均吞吐量性能提升了5%~20%,在饱和状态下可提供与传统AP部署方案相同的性能.

关键词: 免许可频段LTE与WIFI共存接入点 (AP) 部署优先级业务卸载资源共享蜂窝网络    
Abstract:

A priority-based access point (AP) deployment scheme was proposed in the WIFI convergence network, in order to make full use of the unlicensed frequency band, reducing the pressure of the cellular network, and improve the user throughput. By analyzing the characteristics of AP and small base station (SBS) coverage, the APs were divided into high-priority dedicated APs and lower-priority shared APs. Meanwhile, for the proposed AP deployment schemes, three APs resource scheduling modes were proposed, including traffic offloading, resource sharing and hybrid mode. The performance of WIFI convergence network in the unsaturated, semi-saturated, and saturated state was dynamically analyzed. Results show that, compared with the traditional AP deployment scheme, the proposed scheme improved the average throughput of the user by 3%~10% in the unsaturated state, and by 5%~20% in the semi-saturated state, and provides the same performance as traditional AP deployment scheme in the saturated state.

Key words: unlicensed band    LTE and WIFI coexistence    access point (AP) deployment    priority    traffic offloading    resource sharing    cellular network
收稿日期: 2019-01-20 出版日期: 2019-09-12
CLC:  TN 9  
通讯作者: 金心宇     E-mail: wuduanpo@hdu.edu.cn;jinxy@zju.edu.cn
作者简介: 吴端坡(1988—),男,讲师,博士,从事无线宽带网络通信与信息处理研究.orcid.org/0000-0001-6954-6587.E-mail: wuduanpo@hdu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
吴端坡
孔正宇
岑曙炜
金心宇

引用本文:

吴端坡,孔正宇,岑曙炜,金心宇. WIFI融合网络新型接入点部署方案[J]. 浙江大学学报(工学版), 2019, 53(9): 1805-1814.

Duan-po WU,Zheng-yu KONG,Shu-wei CEN,Xin-yu JIN. Novel access point deployment method in WIFI convergence network. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1805-1814.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.09.020        http://www.zjujournals.com/eng/CN/Y2019/V53/I9/1805

图 1  长期演进(LTE)和WIFI共存系统模型
图 2  传统AP部署方案下的业务卸载、资源共享、混合模式
参数 符号 数值 单位
噪声功率 P ?95 dBm
路损模型参数 α 3.75,5.00 ?
传输功率 P 20 dBm
传输包大小 E[P] 1 500 byte
许可、免许可频段带宽 BsB 20,20 MHz
最小竞争窗口 Wmin 16 μs
最大竞争窗口 Wmax 1 024 μs
重传次数 Rlimit 6
WIFI信道比特率 C 130 Mbps
PHY数据头 PHY 192 bit
MAC数据头 MAC 224 bit
空时隙的间隔时间 Tδ 20 μs
时隙时间 δ 9 μs
确认帧 ACK 112+PHY数据头 bit
请求发送帧 RTS 160+PHY数据头 bit
清除发送帧 CTS 112+PHY数据头 bit
短帧间间隔 SIFS 16 μs
分布式帧间间隔 DIFS 50 μs
时隙个数 LA 100
表 1  WIFI吞吐量仿真参数表
图 3  未饱和状态时SBS在2种AP部署方案下的业务卸载、资源共享、混合模式的平均用户吞吐量
图 4  半饱和状态时SBS在两种AP部署方案下的业务卸载、资源共享、混合模式的平均用户吞吐量
图 5  饱和状态下时SBS在两种AP部署方案下的业务卸载、资源共享、混合模式的平均用户吞吐量
1 LI Z, DONG C, LI A, et al. Performance analysis for traffic offloading with MU-MIMO enabled AP in LTE-U networks [C] // GLOBECOM 2017-2017 IEEE Global Communications Conference. Singapore: IEEE, 2017: 1-6.
2 LEE J, YI Y, CHONG S, et al Economics of WiFi offloading: Trading delay for cellular capacity[J]. IEEE Transactions on Wireless Communications, 2014, 13 (3): 1540- 1554
doi: 10.1109/TWC.2014.010214.130949
3 BENNIS M, SIMSEK M, CZYLWIK A, et al When cellular meets WiFi in wireless small cell networks[J]. IEEE Communications Magazine, 2013, 51 (6): 44- 50
doi: 10.1109/MCOM.2013.6525594
4 KIM S, CHON Y, LEE S, et al. Prediction-based personalized offloading of cellular traffic through WiFi networks [C] // 2016 IEEE International Conference on Pervasive Computing and Communications (PerCom). Sydney: IEEE, 2016: 1-9.
5 BULUT E, SZYMANSKI B K. Rethinking offloading wifi access point deployment from user perspective [C] // 2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). New York: IEEE, 2016: 1-6.
6 FAKHFAKH E, HAMOUDA S. Incentive reward for efficient WiFi offloading using Q-learning approach [C] // 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). Valencia: IEEE, 2017: 1114-1119.
7 CHEN Q, YU G, SHAN H, et al Cellular meets WiFi: Traffic offloading or resource sharing?[J]. IEEE Transactions on Wireless Communications, 2016, 15 (5): 3354- 3367
doi: 10.1109/TWC.2016.2520478
8 KANG X, CHIA Y K, SUN S, et al Mobile data offloading through a third-party WiFi access point: an operator's perspective[J]. IEEE Transactions on Wireless Communications, 2014, 13 (10): 5340- 5351
doi: 10.1109/TWC.2014.2353057
9 SUI K, SUN S, AZZABI Y, et al. Understanding the impact of ap density on wifi performance through real-world deployment [C] // 2016 IEEE International Symposium on Local and Metropolitan area networks. Rome: IEEE, 2016: 1-6.
10 TANG S, MA L, XU Y A novel AP placement algorithm based on user distribution for indoor WLAN system[J]. China Communications, 2016, 13 (10): 108- 118
doi: 10.1109/CC.2016.7733036
11 HSU F T, SU H J. When does the AP deployment incentivize a user to offload cellular data: An energy efficiency viewpoint [C] // 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP). Athens: IEEE, 2014: 210-213.
12 ZHANG X, ZHENG Z, LIU J, et al. Optimal power allocation and AP deployment in green wireless cooperative communications [C] // 2012 IEEE Global Communications Conference (GLOBECOM). Anaheim: IEEE, 2012: 4000-4005.
13 BULUT E, SZYMANSKI B K WiFi access point deployment for efficient mobile data offloading[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2013, 17 (1): 71- 78
doi: 10.1145/2502935
14 WANG T, XING G, LI M, et al. Efficient wifi deployment algorithms based on realistic mobility characteristics [C] // The 7th IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2010). San Francisco: IEEE, 2010: 422-431.
15 MA L, ZHENG X, LU Y, et al. Optimization for the deployment and transmitting power of AP based on green WLAN [C] // 2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control. Shenyang: IEEE, 2013: 129-134.
16 KIM T, TAK S Modeling and performance evaluation of AP deployment schemes for indoor location-awareness[J]. Journal of the Korea Institute of Information and Communication Engineering, 2013, 17 (4): 847- 856
doi: 10.6109/jkiice.2013.17.4.847
17 NIHTIL? T, TYKHOMYROV V, ALANEN O, et al. System performance of LTE and IEEE 802.11 coexisting on a shared frequency band [C] // 2013 IEEE Wireless Communications and Networking Conference (WCNC). Shanghai: IEEE, 2013: 1038-1043.
18 ANDREWS J G, BACCELLI F, GANTI R K, et al A tractable approach to coverage and rate in cellular networks[J]. IEEE Transactions on Communications, 2011, 59 (11): 3122- 3134
doi: 10.1109/TCOMM.2011.100411.100541
19 DHILLON, H. S., GANTI, R. K., BACCELLI, F, et al Modeling and analysis of K-tier downlink heterogeneous cellular networks[J]. IEEE Journal on Selected Areas in Communications, 2012, 30 (3): 550- 560
doi: 10.1109/JSAC.2012.120405
[1] 孙晨,吴哲奕,袁建涛. 电力物联网中节能的免许可D2D接入算法设计[J]. 浙江大学学报(工学版), 2020, 54(10): 1867-1873.
[2] 周炳海, 陈锦祥, 赵猛. 基于晶圆优先级的连续型Interbay搬运系统性能分析[J]. 浙江大学学报(工学版), 2015, 49(2): 296-302.
[3] 张洋, 王秀敏, 陈豪威. 基于FPGA的低密度奇偶校验码编码器设计[J]. J4, 2011, 45(9): 1582-1586.
[4] 陈杰 赵民建 李式巨. 面向链接的资源分配与QoS保障联合跨层算法[J]. J4, 2008, 42(10): 1734-1744.