Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (9): 1795-1804    DOI: 10.3785/j.issn.1008-973X.2019.09.019
通信技术、电气工程     
采用恒频参量激励的微机械陀螺驱动控制方案
林一羽(),郑旭东*(),吴海斌,马志鹏,金仲和
浙江大学 微小卫星研究中心,浙江 杭州 310027
MEMS gyroscopes parametric excitation control scheme with constant resonant frequency
Yi-yu LIN(),Xu-dong ZHENG*(),Hai-bin WU,Zhi-peng MA,Zhong-he JIN
Micro-satellite Research Center, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1467 KB)   HTML
摘要:

提出一种基于恒定谐振频率和参量激励的微机械(MEMS)陀螺驱动控制方案. 该方案利用三角形栅极电容实现,使得陀螺驱动谐振频率和品质因子在环境波动下保持恒定,改善陀螺的温度敏感性. 介绍基于三角形栅极电容的频率调谐和参量激励理论,提出并实现新型恒定谐振频率和参量激励驱动方案. 仿真结果表明,对陀螺驱动模态的实时调谐使得谐振频率恒定;参量激励实现了对驱动模态的稳幅控制. 实验结果表明,该方案测得的陀螺的Allan方差偏置不稳定性为1.69°/h,优于传统方案;降温过程中零偏温漂相比传统方案减小了50%.

关键词: 微机械(MEMS)陀螺驱动控制方案参量激励恒谐振频率驱动三角形栅极电容    
Abstract:

A novel drive-mode control scheme for MEMS gyroscopes was presented, where the gyroscopes were parametrically excited with constant resonant frequency. The proposed control scheme enabled a constant resonant frequency excitation with parametric amplification in the drive mode via triangular parallel capacitors, to keep the resonant frequency and quality factor constant against environmental fluctuations, and to improve the gyroscope temperature performance. First, frequency tuning and parametric excitation by means of triangular capacitors were introduced. Then, a new control scheme based on parametric excitation at constant frequency was proposed and implemented. The simulation results indicate that the resonant frequency is tuned to be constant and the dive-mode vibration amplitude is controlled to be stable. Finally, the experimental results indicate that the bias instability of gyroscope was 1.69°/h, which was better than that of the traditional scheme, and the temperature drift of zero-rate output during temperature cooling down was reduced to half compared to the traditional control scheme.

Key words: MEMS gyroscope    drive-mode control    parametric excitation    constant resonance frequency drive    triangular parallel capacitors
收稿日期: 2018-12-13 出版日期: 2019-09-12
CLC:  U 666.12  
通讯作者: 郑旭东     E-mail: linyy@zju.edu.cn;zhengxudong@zju.edu.cn
作者简介: 林一羽(1992—),女,博士生,从事微机械陀螺数字信号处理研究. orcid.org/0000-0002-9827-5955. E-mail: linyy@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
林一羽
郑旭东
吴海斌
马志鹏
金仲和

引用本文:

林一羽,郑旭东,吴海斌,马志鹏,金仲和. 采用恒频参量激励的微机械陀螺驱动控制方案[J]. 浙江大学学报(工学版), 2019, 53(9): 1795-1804.

Yi-yu LIN,Xu-dong ZHENG,Hai-bin WU,Zhi-peng MA,Zhong-he JIN. MEMS gyroscopes parametric excitation control scheme with constant resonant frequency. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1795-1804.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.09.019        http://www.zjujournals.com/eng/CN/Y2019/V53/I9/1795

图 1  栅结构微机械结构示意图
图 2  传统PLL-AGC控制方案和新型CRF-PE控制方案的框图
图 3  CRF-PE控制方案仿真模型
参数 数值 单位 参数 数值 单位
f0 1 835.91 Hz Q0 8 000
mx 1.56×10?5 kg KVF 7.828×10?6 N/V
kx 2 075.800 N/m KXV 1×105 V/m
cx 2.25×10?5 KT 0.038 N/(m?V2
表 1  CRF-PE控制方案的仿真参数
图 4  CRF-PE控制方案仿真结果
图 5  CRF-PE控制方案的实验平台照片
图 6  CRF-PE控制方案1 h驱动稳定性测试
图 7  CRF-PE控制方案中直流分量和交流分量幅度的45 min数据
图 8  新型CRF-PE控制方案和传统PLL-AGC控制方案的陀螺零偏输出的Allan方差对比曲线
图 9  降温过程中新型CRF-PE控制方案和传统PLL-AGC控制方案的零偏数据对比
1 NORTHEMANN T, MAURER M, ROMBACH S, et al. Phase-locked drive loop with amplitude regulation based on phase-shifting for gyroscope [C] // IEEE International Conference Solid-State Sensors, Actuatrors, and Microsystems (Transducers). Beijing: IEEE, 2011: 16-19.
2 OBOE R, ANTONELLO R, LASALANDRA E, et al Control of a Z-axis MEMS vibrational gyroscope [J]. IEEE/ASME Transactions on Mechatronics, 2005, 10 (4): 364- 370
doi: 10.1109/TMECH.2005.852437
3 CUI J, CHI X Z, DING H T, et al Transient response and stability of the AGC-PI closed-loop controlled MEMS vibratory gyroscopes[J]. Journal of Micromechanics and Microengineering, 2009, 19 (12): 125015
doi: 10.1088/0960-1317/19/12/125015
4 ZHU H J, JIN Z H, HU S C, et al. Drive mode control for MEMS gyroscopes with electrostatically tunable structure [C] // IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-Nano). Suzhou: IEEE, 2014: 273-276.
5 OROPEZA-RAMOS L A, TURNER K L. Parametric resonance amplification in a MEMGyroscope [C] // IEEE Sensors. Irvine: IEEE, 2005: 660-663.
6 HARISH K M, GALLACHER B J, BURDESS J S, et al Experimental investigation of parametric and externally forced motion in resonant MEMS sensors[J]. Journal of Micromechanics and Microengineering, 2008, 19 (1): 015021
7 KHIRALLAH K Parametric excitation, amplifica-tion, and tuning of MEMS folded-beam comb drive oscillator[J]. Journal of Microelectromechanical Systems, 2013, 22 (2): 318- 330
doi: 10.1109/JMEMS.2012.2221156
8 NITZAN S H, ZEGA V, LI M, et al Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope[J]. Scientific Reports, 2015, 5: 9036
doi: 10.1038/srep09036
9 GALLACHER B J, BURDESS J S, HARISH K M A control scheme for a MEMS electrostatic resonant gyroscope excited using combined parametric excitation and harmonic forcing[J]. Journal of Micromechanics and Microengineering, 2006, 16 (2): 320- 331
doi: 10.1088/0960-1317/16/2/017
10 SENKAL D, NG E J, HONG V, et al. Parametric drive of a toroidal MEMS rate integrating gyroscope demonstrating <20 PPM scale factor stability [C] // 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS). Estoril: IEEE, 2015: 29-32.
11 ZHANG X F, ZHAO H M, XU D C, et al. Research of suppressing electrical feed-through for resonant ring MEMS gyroscope based on parametric excitation [C] // 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). Xi' an: IEEE, 2018: 133-136.
12 HU S C, JIN Z H, ZHU H J, et al A Slot-structure MEMS gyroscope working at atmosphere with tunable electrostatic spring constant[J]. Journal of Microelectromechanical Systems, 2013, 22 (4): 909- 918
doi: 10.1109/JMEMS.2013.2250485
13 钱磊, 赵鹤鸣, 张晓峰, 等 基于参数激励的MEMS环式陀螺驱动方法与实现[J]. 智能与传感技术, 2018, 26 (11): 293- 302
QIAN Lei, ZHAO He-ming, ZHANG Xiao-feng, et al Improvement of MEMS gyroscope driving method based on parametric excitation[J]. Computer Measurement and Control, 2018, 26 (11): 293- 302
14 RUGAR D, GRUTTER P Mechanical parametric amplification and thermomechanical noise squeezing[J]. Physical Review Letters, 1991, 67 (6): 699- 702
doi: 10.1103/PhysRevLett.67.699
15 WU H B, ZHENG X D, LIN Y Y, et al. A novel amplitude-phase information extraction architecture for MEMS vibratory gyroscopes using a modified double side-band demodulation configuration [C] // 2018 IEEE Sensors. New Delhi: IEEE, 2018: 1134-1137.
16 ZHENG X, D LIU S Q, LIN Y Y, et al An improved phase-robust configuration for vibration amplitude-phase extraction for capacitive MEMS gyroscopes[J]. Micromachines, 2018, 9 (7): 362
doi: 10.3390/mi9070362
17 LIN Y Y, ZHENG X D, LIU S Q, et al Temperature-dependence improvement for a MEMS gyroscope using triangular-electrode based capacitive detection method[J]. IET Micro & Nano Letters, 2017, 12 (11): 828- 833
18 WALTHER A, BLANC C L, DELORME N, et al Bias contributions in a MEMS tuning fork gyroscope[J]. Journal of Microelectromechanical Systems, 2013, 22 (2): 303- 308
doi: 10.1109/JMEMS.2012.2221158
No related articles found!