Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (2): 379-386    DOI: 10.3785/j.issn.1008-973X.2018.02.021
计算机技术     
基于力/位混合控制的工业机器人精密轴孔装配
吴炳龙1,2, 曲道奎1, 徐方1
1. 中国科学院沈阳自动化研究所, 辽宁 沈阳 110016;
2. 中国科学院大学, 北京 100049
Industrial robot high precision peg-in-hole assembly based on hybrid force/position control
WU Bing-long1,2, QU Dao-kui1, XU Fang1
1. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(5822 KB)   HTML
摘要:

为了研究工业机器人在高精密装配领域的应用,针对高精密装配中典型的轴孔装配问题,提出精密轴孔装配流程以及新的力/位混合控制策略实现方式:装配流程包括搜孔、插入、完成3个阶段;新的力/位混合控制策略是基于伺服速度环实现,与传统基于伺服位置环实现的力控制系统相比较具有更大的系统带宽,控制系统结构简单,方便实现,也可以把速度信号进行积分,转化为伺服位置环控制的实现方式,开展仿真和实验以验证方法的有效性,仿真结果表明,基于速度环实现的力控制能够更好地跟踪更高频率的正弦给定信号,具有较好的力跟踪性能.实验采用工业机器人大臂减速机的装配,实验结果表明,采用力/位混合控制方法和螺旋搜孔的方式能够顺利地找到装配孔,很好地完成轴孔装配作业.

Abstract:

A peg-in-hole assembly strategy and a new implementation of hybrid force/position control strategy were proposed, in order to analyze the application of industrial robot in high precision assembly field and solve the typical peg-in-hole problem in high precision assembly. The assembly process included three stages:search, insert and complete. The proposed hybrid force/position control system was based on the motors velocity control loop, and had a larger system bandwidth compared to the traditional force control system based on position control loop. The control structure was simple and easy to implement, and could integrate the velocity signal, and transform into implementation based on the motors position control loop. The simulation and experiment were conducted to verify the effectiveness of the method. The simulation results show that the force/position hybrid control method based on the velocity control loop has better performance to track higher frequency sinusoidal signal than traditional method which is based on the position control loop. The industrial robot was used to assembly the reducer of robot arm. Experimental results show that the force/position hybrid control method with spiral search hole strategy can find the assembly hole and finish the peg-in-hole assembly task well.

收稿日期: 2016-12-04 出版日期: 2018-03-09
CLC:  TP242  
基金资助:

辽宁省科技创新重大专项资助项目(113003).

通讯作者: 徐方,男,研究员,硕导.orcid.org/0000-0001-6009-8183.     E-mail: xufang@sia.cn
作者简介: 吴炳龙(1988-),男,博士生,从事机器人控制等研究.orcid.org/0000-0003-1971-3038.E-mail:wubinglong@sia.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

吴炳龙, 曲道奎, 徐方. 基于力/位混合控制的工业机器人精密轴孔装配[J]. 浙江大学学报(工学版), 2018, 52(2): 379-386.

WU Bing-long, QU Dao-kui, XU Fang. Industrial robot high precision peg-in-hole assembly based on hybrid force/position control. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(2): 379-386.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.02.021        http://www.zjujournals.com/eng/CN/Y2018/V52/I2/379

[1] LANE J D. Evaluation of a remote center compliance device[J]. Assembly Automation, 1980, 1(1):36-46.
[2] VAN DAMME M, BEYL P, VANDERBORGHT B, et al. Estimating robot end-effector force from noisy actuator torque measurements[C]//2011 IEEE International Conference on Robotics and Automation (ICRA). Shanghai, China:IEEE, 2011:1108-1113.
[3] COLOMÉ A, PARDO D, ALENYA G, et al. External force estimation during compliant robot manipulation[C]//2013 IEEE International Conference on Robotics and Automation (ICRA). Karlsruhe, Germany:IEEE, 2013:3535-3540.
[4] WAHRBURG A, ZEISS S, MATTHIAS B, et al. Contact force estimation for robotic assembly using motor torques[C]//2014 IEEE International Conference on Automation Science and Engineering (CASE). Taipei China:IEEE, 2014:1252-1257.
[5] STOLT A, LINDEROTH M, ROBERTSSON A, et al. Force controlled robotic assembly without a force sensor[C]//2012 IEEE International Conference on Robotics and Automation (ICRA). Saint Paul. MN, USA:IEEE, 2012:1538-1543.
[6] CHEN H, WANG J, ZHANG G, et al. Robotic soft servo for industrial high precision assembly[C]//2008 IEEE Conference on Robotics, Automation and Mechatronics. Chengdu, China:IEEE, 2008:24-29.
[7] HOGAN N. Impedance control:An approach to manipulation:Part Ⅱ-Implementation[J]. Journal of dynamic systems, measurement, and control, 1985, 107(1):8-16.
[8] ALBU-SCHÄFFER A, OTT C, HIRZINGER G. A unified passivity-based control framework for position, torque and impedance control of flexible joint robots[J]. The International Journal of Robotics Research, 2007, 26(1):23-39.
[9] 张庭,姜力,刘宏. 仿生假手抓握力控制策略[J]. 机器人,2012,34(2):190-196. ZHANG Ting, JIANG Li, LIU Hong. A grasping force control strategy for anthropomorphic prosthetic hand.[J] Robot, 2012,34(2):190-196.
[10] MILLS J K, GOLDENBERG A A. Force and position control of manipulators during constrained motion tasks[J]. IEEE Transactions on Robotics and Automation, 1989, 5(1):30-46.
[11] LI E, LI W. Hybrid force/position control for positional-controlled robotic manipulators in unknown environment[J]. Journal of China Coal Society, 2007, 6:023.
[12] 张庆伟,韩利利,徐方,等.基于打磨机器人的力/位混合控制策略研究[J].化工自动化及仪表,2012,39(7):884-886 ZHANG Qing-wei, HAN Li-li, XU Fang.et al. Hybrid force/position control study based on grinding robot[J]. Control and Instruments in Chemical Industry, 2012,39(7):884-886.

[1] 王晨学, 平雪良, 徐超. 解决约束平面偏移问题的机械臂闭环标定[J]. 浙江大学学报(工学版), 2018, 52(11): 2110-2119.
[2] 赵晓东, 刘作军, 陈玲玲, 杨鹏. 下肢假肢穿戴者跑动步态识别方法[J]. 浙江大学学报(工学版), 2018, 52(10): 1980-1988.
[3] 王硕朋, 杨鹏, 孙昊. 听觉定位数据库构建过程优化[J]. 浙江大学学报(工学版), 2018, 52(10): 1973-1979.
[4] 傅晓云, 雷磊, 杨钢, 李宝仁. 喷水推进型水下滑翔机的水平翼参数配置及定常运动分析[J]. 浙江大学学报(工学版), 2018, 52(8): 1499-1508.
[5] 李中雯, 王斌锐, 陈迪剑. 有并联脊柱的四足机器人步态规划[J]. 浙江大学学报(工学版), 2018, 52(7): 1267-1274.
[6] 柯显信, 张文朕, 杨阳, 温雷. 仿人机器人多传感器定位系统[J]. 浙江大学学报(工学版), 2018, 52(7): 1247-1252.
[7] 李泚泚, 田国会, 张梦洋, 张营. 基于本体的物品属性类人认知及推理[J]. 浙江大学学报(工学版), 2018, 52(7): 1231-1238.
[8] 陈迪剑, 徐一展, 王斌锐. 基于双生成函数的步行机器人最优步态生成[J]. 浙江大学学报(工学版), 2018, 52(7): 1253-1259.
[9] 潘立, 鲍官军, 胥芳, 张立彬. 六自由度装配机器人的动态柔顺性控制[J]. 浙江大学学报(工学版), 2018, 52(1): 125-132.
[10] 谷雨, 李平, 韩波. 基于分层粒子滤波的地标检测与跟踪[J]. J4, 2010, 44(4): 687-691.
[11] 蒋荣欣, 张亮, 田翔, 陈耀武. 多机器人队形变换最优效率求解[J]. J4, 2010, 44(4): 722-727.
[12] 刘楚辉, 姚宝国, 柯映林. 工业机器人切削加工离线编程研究[J]. J4, 2010, 44(3): 426-431.
[13] 李强, 王宣银, 程佳. Stewart液压平台轨迹跟踪自适应滑模控制[J]. J4, 2009, 43(6): 1124-1128.
[14] 奚海燕, 牟同升, 李俊凯, 等. 平板显示器彩色运动伪像的测量与评价[J]. J4, 2009, 43(6): 1158-1162.
[15] 程邦胜, 唐孝威. Harris尺度不变性关键点检测子的研究[J]. J4, 2009, 43(5): 855-859.