Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (2): 325-332    DOI: 10.3785/j.issn.1008-973X.2018.02.015
土木与交通工程     
高速交通轨道梁高精度光纤变形监测
张颜, 李素贞, 张弛, 陈圣杰, 孙伟杰
同济大学 建筑工程系, 上海 200092
High-precision deformation monitoring for track girders in rapid rail transit
ZHANG Yan, LI Su-zhen, ZHANG Chi, CHEN Sheng-jie, SUN Wei-jie
Department of Building Engineering, Tongji University, Shanghai 200092, China
 全文: PDF(1688 KB)   HTML
摘要:

为了分析长标距光纤光栅(FBG)在轨道梁变形监测中的可靠性问题,建立共轭梁法计算模型,分析跨中挠度的模型误差.引入测量误差,得到不同FBG标距、不同测量误差下长标距FBG的变形监测精度.通过某高速轨道梁的现场测试实验,对长标距FBG的可靠性进行验证,提出2种传感器优化布置方案.结果表明,当布置的传感器数量大于8时,监测结果的误差控制在1%以内,考虑20%的测量误差,监测结果的误差可以控制在10%以内;现场实测的挠度与理论值的相对误差为2.01%,由此说明长标距FBG可以实现对高速交通轨道梁的高精度变形监测.

Abstract:

A conjugate beam model was constructed to analyze the theoretical error of mid-span deflection in order to analyze the reliability of the long-gage fiber Bragg grating(FBG)in the deformation monitoring for track girders. Then the measurement error was considered to establish the precision of the long-gage FBG sensors for deformation measurement considering different gage length and measurement error. A field testing on a track girder was conducted to verify the reliability of the long-gage FBG and two optimization programs for the sensor layout was proposed. The identification error can be controlled within 1% when the number of sensor is over 8 and the value becomes 10% considering 20% measurement error. The relative error between the test result and the theoretical value is 2.01%, which indicates that the long-gauge FBG can achieve high precision deformation monitoring for track girders in rapid rail transit.

收稿日期: 2016-12-05 出版日期: 2018-03-09
CLC:  TU196  
基金资助:

“十二五”国家科技支撑计划重大资助项目(2013BAG19B00-02-04).

通讯作者: 李素贞,女,副教授.     E-mail: Lszh@tongji.edu.cn
作者简介: 张颜(1992-),男,硕士生,从事现代混凝土结构与生命线工程等研究.orcid.org/0000-0001-9706-5430.E-mail:873125803@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

张颜, 李素贞, 张弛, 陈圣杰, 孙伟杰. 高速交通轨道梁高精度光纤变形监测[J]. 浙江大学学报(工学版), 2018, 52(2): 325-332.

ZHANG Yan, LI Su-zhen, ZHANG Chi, CHEN Sheng-jie, SUN Wei-jie. High-precision deformation monitoring for track girders in rapid rail transit. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(2): 325-332.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.02.015        http://www.zjujournals.com/eng/CN/Y2018/V52/I2/325

[1] 王磊. 大型桥梁健康监测中挠度测量技术研究[D].南京:东南大学,2006:1-49. WANG Lei. Research of deformation surveying technology applied to health monitoring of long-span bridges[D]. Nan jing:Southeast University,2006:1-49.
[2] 崔红梅. 桥梁挠度快速监测系统[D]. 重庆:重庆交通大学,2013:1-78. CUI Hong-mei. Quick deflection monitoring system of bridge[D]. Chongqing:Chongqing Jiaotong University,2013:1-78.
[3] DING Y,WANG P,YU S. A new method for deformation monitoring on H-pile in SMW based on BOTDA[J]. Measurement,2015,70:156-168.
[4] 冷建成,周国强,吴泽民,等. 光纤传感技术及其在管道监测中的应用[J]. 无损检测,2012,34(01):61-65. LENG Jian-cheng,ZHOU Guo-qiang,WU Ze-min,et al. Optical fiber sensing technology and its applications in pipeling monitoring[J]. Nondestructive Testing, 2012,34(01):61-65.
[5] 柴敬,张丁丁,李毅. 光纤传感技术在岩土与地质工程中的应用研究进展[J]. 建筑科学与工程学报,2015,32(3):28-37. CHAI Jing,ZHANG Ding-ding,LI Yi. Research progress of optical fiber sensing technology in geotechnical and geological engineering[J]. Journal of Architecture and Civil Engineering,2015,32(03):28-37.
[6] LI H N,LI D S,SONG G B. Recent applications of fiber optic sensors to health monitoring in civil engineering[J]. Engineering Structures,2004,26(11):1647-1657.
[7] KIM N S,CHO N S. Estimating the deflection of a simple beam model by using fiber Bragg-grating sensors[J]. Experimental Mechanics,2004,44(04):433-439.
[8] 郭余根. 基于长标距分布式布拉格光纤光栅(FBG)传感的地铁基坑施工监测[J]. 城市轨道交通研究,2013(7):26-28. GUO Yu-gen. Monitoring of subway deep foundation pit construction based on long gauge distributed FBG sensing technique[J]. Urban Mass Transit, 2013(7):26-28.
[9] 沈圣,吴智深,杨才千,等. 给予分布式光纤应变传感技术的盾构隧道横截面收敛变形监测方法[J]. 土木工程学报,2013,46(9):104-116. SHEN Sheng, WU Zhi-shen,YANG Cai-qian,et al. Convergence deformation monitoring of shield tunnels based on distributed optical fiber strain sensing technique[J]. China Civil Engineering Journal,2013,46(9):104-116.
[10] 程有坤,孟上九,汪云龙,等. 光纤光栅在动荷载作用下路基变形监测中的应用[J]. 地下空间与工程学报,2014,10(2):1887-1892. CHEN You-kun,MENG Shang-jiu,WANG Yun-long,et al. Application of fiber bragg grating (FBG) in subgrade deformation monitoring under dynamic load[J]. Chinese Journal of Underground Space and Engineering, 2014,10(2):1887-1892.
[11] 沈圣,吴智深,杨才千,等. 基于分布式光纤应变传感技术的改进共轭梁法检测结构变形分布研究[J]. 土木工程学报,2010,43(7):63-70. SHEN Sheng,WU Zhi-shen YANG Cai-qian,et al. An improved conjugated beam method for structural deformation monitoring based on distributed optical fiber strain sensing technique[J]. China Civil Engineering Journal,2010,43(7):63-70.
[12] LI S Z,WU Z S. Development of distributed long-gage fiber optic sensing system for structural health monitoring[J]. Structural Health Monitoring,2007,6(02):133-143.
[13] 何俊. 分布式光纤传感系统关键技术研究[D]. 哈尔滨:哈尔滨工业大学,2010:1-122. HE Jun. Research on some key technologies of distributed fiber sensing system[D]. Harbin:Harbin Institute of Technology,2010:1-122.

No related articles found!