Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (2): 317-324    DOI: 10.3785/j.issn.1008-973X.2018.02.014
土木与交通工程     
类矩形土压平衡盾构施工引起的地表变形
张雪辉1,2, 陈吉祥1,2, 白云1,2, 陈昂1,2, 黄德中3
1. 同济大学 地下建筑与工程系, 上海 200092;
2. 同济大学 岩土及地下工程教育部重点实验室, 上海 200092;
3. 上海隧道工程有限公司, 上海 200232
Ground surface deformation induced by quasi-rectangle EPB shield tunneling
ZHANG Xue-hui1,2, CHEN Ji-xiang1,2, BAI Yun1,2, CHEN Ang1,2, HUANG De-zhong3
1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China;
2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China;
3. Shanghai Tunnel Engineering Limited Company, Shanghai 200232, China
 全文: PDF(2787 KB)   HTML
摘要:

针对类矩形盾构施工的扰动控制问题,基于弹性力学Mindlin解,考虑刀盘正面附加推力、壳体与土体之间摩阻力、同步注浆压力以及土体损失4种因素的共同作用,采用数值积分法和叠加原理对地表变形进行计算分析.结果表明:4种因素共同作用下类矩形盾构掘进地表相当范围内表现为沉降,最大收敛沉降约为33 mm,开挖面前方的沉降影响主要集中在前方10 m范围;同步注浆压力产生的地表隆起可以部分抵消土体损失引发的沉降,因而合理的同步注浆有利于沉降控制;4类因素中,正面附加推力和盾壳摩阻力产生的地表变形很小.理论结果与实测数据基本吻合,可为后期类矩形盾构隧道施工的扰动控制提供理论参考.

Abstract:

The disturbance control of quasi-rectangle shield tunneling was analyzed. The coupling effects of the following four factors-the horizontal excess pressure at the excavation face, the friction between the shield skin and soil, the grouting force outside the tailskin and ground loss were analyzed based on the Mindlin solution. The ground surface deformation was calculated with numerical integration method and superposition. (1) Superposition of these four factors causes large ground surface settlement near the tunneling area, with a convergence settlement about 33 mm, and significant settlement occurs within 10 m ahead of the face; (2) Grouting force causes significant heave and can partially offset the settlement induced by ground loss, thus appropriate grouting can assist settlement control;(3) Of all the four factors, the ground deformation induced by horizontal excess pressure and skin friction is quite small, if compared with the other two factors. The theoretic results accorded with on-site monitoring data, which assists disturbance control of future quasi-rectangle shield tunneling.

收稿日期: 2016-12-20 出版日期: 2018-03-09
CLC:  TU443  
基金资助:

国家自然科学基金资助项目(51478340);上海市科学技术委员会资助项目(14DZ1207803,14DZ1207900);宁波市重大科技攻关资助项目(2015C110017).

通讯作者: 白云,男,教授,博导.orcid.org/0000-0002-5246-1402.     E-mail: baiyun1958@tongji.edu.cn
作者简介: 张雪辉(1990-),男,硕士生,主要从事盾构隧道方面等研究.orcid.org/0000-0001-5436-4975.E-mail:zhangxhsh@aliyun.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

张雪辉, 陈吉祥, 白云, 陈昂, 黄德中. 类矩形土压平衡盾构施工引起的地表变形[J]. 浙江大学学报(工学版), 2018, 52(2): 317-324.

ZHANG Xue-hui, CHEN Ji-xiang, BAI Yun, CHEN Ang, HUANG De-zhong. Ground surface deformation induced by quasi-rectangle EPB shield tunneling. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(2): 317-324.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.02.014        http://www.zjujournals.com/eng/CN/Y2018/V52/I2/317

[1] KASHIMA Y, KONDO N, INOUE M. Development and application of the DPLEX shield method:results of experiments using shield and segment models and application of the method in tunnel construction[J]. Tunnelling and Underground Space Technology, 1996, 11(1):45-50.
[2] KONDA T. Shield tunneling method[J]. Civil Engineering, Japan Society of Civil Engineers, 2001, 39:23-27.
[3] 盛佳韧,叶冠林,桥本正,等. 双圆盾构盾尾注浆对地层沉降的影响分析[J]. 地下空间与工程学报,2014,01:201-205. SHENG Jia-ren, YE Guan-lin, Tadashi H, et al. Influence of backfill grouting on ground settlement in DOT shield[J]. Chinese Journal of Underground Space & Engineering, 2014, 10(1):201-205.
[4] 周文波,顾春华. 双圆盾构施工技术[J]. 现代隧道技术,2004,04:22-32+44. ZHOU Wen-bo, GU Chun-hua. Construction technique of DOT shield[J]. Modern Tunnelling Technology, 2004, 04:22-32+44.
[5] 张冬梅,黄宏伟, 林平,等. 地铁盾构推进引起周围土体附加应力分析[J]. 地下空间, 1999, 19(5):379-382. ZHANG DONG-mei, HUANG Hong-wei, LIN Ping, et al. Additional stress analysis of subway shieldtunneling[J].Underground Space, 1999, 19(5):379-382.
[6] 孙统立,张庆贺,韦良文,等. 双圆盾构掘进施工扰动土体附加应力分析[J]. 岩土力学. 2008, 29(8):2246-2251. SUN Tong-li, ZHANG Qing-he, WEI Liang-wen, et al. Analysis of additional stresses of soil disturbance induced by propulsion of double-O-tube shield[J]. Rock & Soil Mechanics, 2008, 29(8):2246-2251.
[7] 魏纲,张世民,齐静静,等. 盾构隧道施工引起的地面变形计算方法研究[J]. 岩石力学与工程学报, 2006(增1):3317-3323. WEI G, ZHANG S, QI J, et al. Study on calculation method of ground deformation induced by shield tunnel construction[J]. Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2006, 25(supp.1):3317-3323.
[8] 林存刚,刘干斌,梁荣柱,等. 隧道坡度对盾构掘进引起地面隆陷的影响[J]. 岩土工程学报. 2014(7):1203-1212. LIN Cun-gang, LIU Gan-bing, LIANG Rong-zhu, et al. Influences of tunnel slope on shield tunnelling-induced heave and subsidence of ground surface[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7):1203-1212.
[9] 傅德明,张冠军. 我国矩形掘进机隧道施工技术发展与应用[J]. 上海建设科技. 2008, 02:4-5. FU De-ming, ZHANG Guan-jun. Technical development and application of rectangular shieldtunnelling in china[J]. Shanghai Construction Science & Technology, 2008, 02:4-5.
[10] 郭昊. 矩形顶管机下穿郑州市中州大道工程简介[J]. 中国市政工程. 2013, 05:53-55. GUO Hao. Brief Introduction of Zhengzhou Zhongzhon Ave.underpass project using rectangular pipe jacking machine[J]. China Municipal Engineering, 2013, 05:53-55.
[11] 周顺华,廖全燕,刘建国,等.矩形顶管隧道顶进过程的地层损失[J]. 岩石力学与工程学报, 2001, 20(3):342-345. ZHOU Shun-hua, LIAO Quan-yan, LIU Jian-guo, et al. Stratum loss during pipe jacking of rectangle tunnel[J]. Chinese Journal of Rock Mechanics & Engineering, 2001, 20(3):342-345.
[12] 邓长茂, 彭基敏, 沈国红. 软土地区矩形顶管施工地表变形控制措施探讨[J]. 地下空间与工程学报, 2016, 12(4):1002-1007. DENG Chang-mao,PENG Jim-in,SHEN Guo-hong. Discussion on control methods of ground surface settlement caused by rectangular pipe jacking construction in soft soils[J]. Chinese Journal of Underground Space & Engineering, 2016, 12(4):1002-1007.
[13] 王洪新. 土压平衡盾构刀盘挤土效应及刀盘开口率对盾构正面接触压力影响[J]. 土木工程学报. 2009(07):113-118. WANG Hong-xin. Effect of cutterhead compressing the front soil and influence of head aperture ratio on contact pressure of EPB shield to the front soil[J]. Tumu Gongcheng Xuebao/China Civil Engineering Journal, 2009, 42(7):113-118.
[14] 杨敏,赵锡宏. 分层土中的单桩分析法[J]. 同济大学学报:自然科学版, 1992,04:421-428. YANG Min, ZHAO Xi-hong. An approach for a single pile in layered soil[J]. Journal of Tongji University:Natural Science, 1992, 04:421-428.
[15] 梁荣柱,夏唐代,林存刚,等. 盾构推进引起地表变形及深层土体水平位移分析[J]. 岩石力学与工程学报. 2015, 34(3):583-593. LIANG Rong-zhu, XIA Tan-dai, LIN Cun-gang, et al. Analysis of ground surface displacement and horizontal movement of deep soils induced by shield advancing[J]. Yanshilixue Yu Gongcheng Xuebao/chinese Journal of Rock Mechanics & Engineering,2015, 34(3):583-593.
[16] 张乾青,李连祥,李术才,等. 成层土中单桩受力性状简化算法[J]. 岩石力学与工程学报. 2012, 31(z1):3390-3394. ZHANG Qian-qing, LI Lian-xiang, LI Shu-cai, et al. Simplified analytical method for response prediction of single pile embeded into layered soils[J]. Yanshilixue Yu Gongcheng Xuebao/chinese Journal of Rock Mechanics & Engineering, 2012, 31:3390-3394.
[17] POTYONDY J G. Skin friction between various soils and construction materials[J]. Geotechnique,1961, 11(4):339-353.
[18] 吕虎, 张庆贺. 地铁双圆盾构施工引起的地面沉降模型[J]. 建井技术,2006, 27(1):32-34. LV Hu, ZHANG Qing-he. Analysis model of surface settlement induced by subway double-O-tube shield[J]. Mine Construction Technology, 2006, 27(1):32-34.
[19] MINDLIN R D. Force at a point in the interior of a semi-infinite solid[J]. Physics,1936, 7(5):195-201.
[20] LOGANATHAN N POULOS H G. Analytical prediction for tunneling-induced ground movement in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(9):846-856.
[21] 魏纲. 盾构隧道施工引起的土体损失率取值及分布研究[J]. 岩土工程学报, 2011, 28(9):0-0. GANGW E I. Selection and distribution of ground loss ratio induced by shield tunnel construction[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9):1354-1361.

[1] 任松, 欧阳汛, 吴建勋, 陈钒, 王亮, 陈结. 含时间效应的硬石膏隧道弹-膨胀解析模型[J]. 浙江大学学报(工学版), 2018, 52(5): 896-905.
[2] 郭康仕, 庄艳峰, 段伟. 蒙脱石电渗微观机理试验研究[J]. 浙江大学学报(工学版), 2017, 51(12): 2373-2382.
[3] 柯瀚, 董鼎, 陈云敏, 郭城, 冯世进. 考虑剪缩性的城市固体废弃物非线性弹性模型[J]. 浙江大学学报(工学版), 2017, 51(11): 2158-2164.
[4] 邹维列, 贺扬, 张凤德, 王东星, 汪帅, 王远明. 改性淤泥固化土非饱和渗透特性试验研究[J]. 浙江大学学报(工学版), 2017, 51(11): 2182-2188.