人机交互与普适计算 |
|
|
|
|
基于Wi-Fi的非接触式行为识别研究综述 |
王钰翔, 李晟洁, 王皓, 马钧轶, 王亚沙, 张大庆 |
1. 北京大学 高可信软件技术教育部重点实验室, 北京 100871;
2. 北京大学 信息科学技术学院, 北京 100871;
3. 北京大学 软件工程国家工程研究中心, 北京 100871 |
|
Survey on Wi-Fi based contactless activity recognition |
WANG Yu-xiang, LI Sheng-jie, WANG Hao, MA Jun-yi, WANG Ya-sha, ZHANG Da-qing |
1. Key Laboratory of High Confidence Software Technologies, Ministry of Education, Peking University, Beijing 100871, China;
2. School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China;
3. National Engineering Research Center of Software Engineering, Peking University, Beijing 100871, China |
引用本文:
王钰翔, 李晟洁, 王皓, 马钧轶, 王亚沙, 张大庆. 基于Wi-Fi的非接触式行为识别研究综述[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.04.002.
WANG Yu-xiang, LI Sheng-jie, WANG Hao, MA Jun-yi, WANG Ya-sha, ZHANG Da-qing. Survey on Wi-Fi based contactless activity recognition. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.04.002.
|
[1] ZHENG Y, CAPRA L, WOLFSON O, et al. Urban computing: concepts, methodologies, and applications [J]. ACM Transactions on Intelligent Systems and Technology, 2014, 5(3): 38.
[2] FOERSTER F, SMEJA M, FAHRENBERG J. Detection of posture and motion by accelerometry: a validation study in ambulatory monitoring [J]. Computers in Human Behavior, 1999, 15(5): 571-583.
[3] LARA O D, LABRADOR M A. A survey on human activity recognition using wearable sensors [J]. IEEE Communications Surveys and Tutorials, 2013, 15(3): 1191-1209.
[4] AGGARWAL J K, RYOO M S. Human activity analysis: a review [J]. ACM Computing Surveys, 2011, 43(3): 16.
[5] SCHOLZ M, SIGG S, SCHMIDTKE H R, et al. Challenges for device-free radio-based activity recognition [C]∥Workshop on Context Systems, Design, Evaluation and Optimization. Italy: [s. n.], 2011.
[6] TURAGA P, CHELLAPPA R, SUBRAHMANIAN V S, et al. Machine recognition of human activities: a survey [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(11): 1473-1488.
[7] LAI C-P, NARAYANAN R M. Through-wall imaging and characterization of human activity using ultrawideband (UWB) random noise radar [C]∥Defense and Security. International Society for Optics and Photonics. California: [s. n.], 2005: 186-195.
[8] POSTOLACHE O, GIRÃO P S, POSTOLACHE G, et al. Cardio-respiratory and daily activity monitor based on FMCW Doppler radar embedded in a wheelchair[C]∥2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Boston: IEEE, 2011: 1917-1920.
[9] SCHÖLKOPF B, PLATT J C, SHAWE-TAYLOR J, et al. Estimating the support of a high-dimensional distribution [J]. Neural computation, 2001, 13(7):1443-1471.
[10] BAHL P, PADMANABHAN V N. RADAR: An in-building RF-based user location and tracking system [C]∥19th Annual Joint Conference of the IEEE Computer and Communications Societies. Israel: IEEE, 2000:775-784.
[11] SEIFELDIN M, SAEED A, KOSBA A E, et al. Nuzzer: a large-scale device-free passive localization system for wireless environments [J]. IEEE Transactions on Mobile Computing, 2009, 12(7): 1321-1334.
[12] WANG Y, LIU J, CHEN Y, et al. E-eyes: device-free location-oriented activity identification using fine-grained wifi signatures [C]∥Proceedings of the 20th Annual International Conference on Mobile Computing and Networking. Hawaii: ACM, 2014: 617-628.
[13] ADIB F, KATABI D. See through walls with WiFi! [J].ACM SIGCOMM Computer Communication Review, 2013, 43(4): 75-86.
[14] WANG G, ZOU Y, ZHOU Z, et al. We can hear you with wi-fi! [J]. IEEE Transactions on Mobile Computing, 2016, 15(11): 2907-2920.
[15] PU Q, GUPTA S, GOLLAKOTA S, et al. Whole-home gesture recognition using wireless signals [C]∥Proceedings of the 19th Annual International Conference on Mobile Computing and Networking. Florida: ACM, 2013: 27-38.
[16] ADIB F, KABELAC Z, KATABI D, et al. 3D tracking via body radio reflections [C]∥NSDI. Washington: [s. n.], 2014: 317-329.
[17] ADIB F, MAO H, KABELAC Z, et al. Smart homes that monitor breathing and heart rate [C]∥Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. Korea: ACM, 2015: 837-846.
[18] HALPERIN D. Linux 802.11n CSI tool [EB/OL]. [2016-12-02]. http:∥dhalperi.github.io/linux-80211n-csitool/.
[19] WANG Y, WU K, NI L M. Wifall: device-free fall detection by wireless networks [J]. IEEE Transactions on Mobile Computing, 2017, 16(2): 581-594.
[20] WANG H, ZHANG D, WANG Y, et al. RT-Fall: A real-time and contactless fall detection system with commodity WiFi devices [J]. IEEE Transactions on Mobile Computing, 2017, 16(2): 511-526.
[21] MELGAREJO P, ZHANG X, RAMANATHAN P, et al. Leveraging directional antenna capabilities for fine-grained gesture recognition [C]∥Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing. Seattle: ACM, 2014:541-551.
[22] HUANG D, NANDAKUMAR R, GOLLAKOTA S. Feasibility and limits of wi-fi imaging [C]∥Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems. Memphis: ACM, 2014: 266-279.
[23] HALPERIN D. Published articles list [EB/OL]. [2016-12-02]. http:∥dhalperi.github.io/linux-80211n-csitool/#external.
[24] WANG W, LIU A X, SHAHZAD M, et al. Understanding and modeling of wifi signal based human activity recognition [C]∥Proceedings of the 21st Annual International Conference on Mobile Computing and Networking. Paris: ACM, 2015: 65-76.
[25] YANG Z, ZHOU Z, LIU Y. From RSSI to CSI: indoor localization via channel response [J]. ACM Computing Surveys (CSUR), 2013, 46(2): 25.
[26] ZHOU Z, WU C, YANG Z, et al. Sensorless sensing with WiFi [J]. Tsinghua Science and Technology, 2015, 20(1): 1-6.
[27] TSE D, VISWANATH P. Fundamentals of wireless communication [M]. Cambrige: Cambridge University Press, 2005.
[28] ZHANG D, WANG H, WANG Y, et al. Anti-fall: A non-intrusive and real-time fall detector leveraging CSI from commodity WiFi devices [C]∥International Conference on Smart Homes and Health Telematics. \[S.l.\]: Springer, 2015: 181-193.
[29] HELAL S, CHANDRA R, KRAVETS R. Proceedings of the 19th annual international conference on Mobile computing and networking [C]∥International Conference on Mobile Computing and Networking. Florida: ACM, 2013: 44-54.
[30] NANDAKUMAR R, KELLOGG B, GOLLAKOTA S. Wi-Fi gesture recognition on existing devices [J]. Eprint Arxiv, 2014, 3(2): 17.
[31] SEN S, RADUNOVIC B, CHOUDHURY R R, et al. You are facing the Mona Lisa: spot localization using PHY layer information [C]∥Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services. UK: ACM, 2012: 183-196.
[32] WU C, YANG Z, ZHOU Z, et al. Non-invasive detection of moving and stationary human with WiFi[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(11): 2329-2342.
[33] WU C, YANG Z, ZHOU Z, et al. PhaseU: real-time LOS identification with WiFi [C]∥Computer Communications. Hong Kong: IEEE, 2015: 2038-2046.
[34] DAVIES L, GATHER U. The identification of multiple outliers [J]. Journal of the American Statistical Association, 1993, 88(423): 797-801.
[35] LIU J, WANG Y, CHEN Y, et al. Tracking vital signs during sleep leveraging off-the-shelf Wifi[C]∥Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing. Hang Zhou: ACM, 2015: 267-276.
[36] XIAO J, WU K, YI Y, et al. Fimd: Fine-graineddevice-free motion detection[C]∥Parallel and Distributed Systems (ICPADS), 2012 IEEE 18th International Conference on. Singapore: IEEE, 2012: 229-235.
[37] QIAN K, WU C, YANG Z, et al. PADS: Passive detection of moving targets with dynamic speed using PHY layer information[C]∥ 2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS). Tai Wan: IEEE, 2014: 1-8.
[38] ALI K, LIU A X, WANG W, et al. Keystroke recognition using wifi signals[C]∥Proceedings of the 21st Annual International Conference on Mobile Computing and Networking. Paris: ACM, 2015: 90-102.
[39] SHETH A, SESHAN S, WETHERALL D. Geo-fencing: confining Wi-Fi coverage to physical boundaries [C]∥International conference on Pervasive Computing. Texas: Springer, 2009: 274-290.
[40] ZENG Y, PATHAK P H, MOHAPATRA P. Analyzing shopper’s behavior through wifi signals [C]∥Proceedings of the 2nd workshop on Workshop on Physical Analytics. Italy: ACM, 2015: 13-18.
[41] WANG H, MA J Y, WANG Y X, et al. Fall detection demo [EB/OL]. [2016-12-02]. http:∥v.youku.com/v_show/id_XMTM5MzM0MjkzMg.html.
[42] LIU X, CAO J, TANG S, et al. Wi-Sleep: contactless sleep monitoring via WiFi signals [C]∥ 2014 IEEE Real-Time Systems Symposium (RTSS). Italy: IEEE, 2014: 346-355.
[43] ZENG Y, PATHAK P H, MOHAPATRA P. WiWho: wifi-based person identification in smart spaces [C]∥Proceedings of the 15th International Conference on Information Processing in Sensor Networks. Austria: IEEE, 2016: 4.
[44] WANG T, ZHANG D, WANG Z, et al. Recognizing gait pattern of Parkinson’s disease patients based on finegrained movement function features[C]∥IEEE International Conference on Ubiquitous Intelligence and Computing. Beijing: IEEE, 2015: 1-10.
[45] GAO L. Channel state information fingerprinting based indoor localization: a deep learning approach [D]. Auburn: Auburn University, 2015.
[46] WANG X, GAO L, MAO S, et al. DeepFi: deep learning for indoor fingerprinting using channel state information [C]∥ 2015 IEEE Wireless Communications and Networking Conference (WCNC). New Orleans: IEEE, 2015: 1666-1671.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|