Please wait a minute...
浙江大学学报(工学版)
自动化技术、控制技术     
基于预约的数据队列水下无线传感器网络MAC协议
钱良芳, 张森林, 刘妹琴
1. 浙江大学 工业控制技术国家重点实验室, 浙江 杭州 310027;
2 浙江大学 电气工程学院, 浙江 杭州 310027
Reservation-based MAC protocol for underwater wireless sensor networks with data train
QIAN Liang-fang, ZHANG Sen-lin, LIU Mei-qin
1. State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China;
2. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1202 KB)   HTML
摘要:

为了有效地减少水声信道冲突提高网络吞吐量,提出基于预约的数据队列水下无线传感器网络MAC协议.该协议在数据传输前设置了信道预约周期与预约确认周期,利用RTS-CTS握手过程完成信道的预约、确认与数据传输的排序工作.当全部预约得到确认后,所有发送端按事先排好的顺序以接龙的方式传输数据队列,完成多对节点间的数据传输任务.这些方法降低了节点的平均预约时间,减少了节点发送数据的等待时间,有效提高了网络吞吐量.仿真实验结果表明,当网络负载较高时,该协议能够较大程度地减少控制包开销,提高网络吞吐量.

Abstract:

A reservation-based MAC protocol for underwater wireless sensor networks with data train was proposed in order to effectively reduce the channel conflict and improve the network throughput. In this protocol, a reservation period and a reservation confirmation period were introduced before the data transmission. Utilizing the RTS-CTS, the channel was reserved and the data packets were sorted. After the reservation period and the reservation confirmation period, all the data packets were transmitted in order. These methods can reduce the average reservation time and the waiting time of the nodes to send data, and effectively improve the network throughput. The simulation results show that the protocol can reduce the control packet cost and improve the network throughput when the network load is high.

出版日期: 2017-04-25
CLC:  TP 393  
基金资助:

浙江省自然科学基金资助项目(LZ14F030003);国家自然科学基金资助项目(61374021, 61531015, U1609204);2014年工信部电子信息产业发展基金资助项目(TD-LTE专项).

通讯作者: 刘妹琴,女,教授. ORCID: 0000-0003-0693-6574.     E-mail: liumeiqin@zju.edu.cn
作者简介: 钱良芳(1988—),男,博士生,从事水下无线传感器网络的研究. ORCID: 0000-0002-6692-931X. E-mail: qian9904@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

钱良芳, 张森林, 刘妹琴. 基于预约的数据队列水下无线传感器网络MAC协议[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.04.008.

QIAN Liang-fang, ZHANG Sen-lin, LIU Mei-qin. Reservation-based MAC protocol for underwater wireless sensor networks with data train. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.04.008.

[1] AKYILDIZ I F, POMPILI D, MELODIA T. Underwater acoustic sensor networks: research challenges [J]. Ad Hoc Networks Journal, 2005, 3(3): 257-281.
[2] CUI J, KONG J, GERLA M, et al. The challenges of building mobile underwater wireless networks for aquatic applications [J]. IEEE Network, 2006, 20(3): 12-18.
[3] CLIMENT S, SANCHEZ A, CAPELLA J, et al. Underwater acoustic wireless sensor networks: advances and future trends in physical, MAC and routing layers [J]. Sensors, 2014, 14(1): 795-833.
[4] CHEN K, MA M, CHENG E, et al. A survey on MAC protocols for underwater wireless sensor networks [J]. IEEE Communications Surveys And Tutorials, 2014, 16(3): 1433-1447.
[5] LIU J, WANG Z, PENG Z, et al. Suave: swarm underwater autonomous vehicle localization [C]∥Proceedings of IEEE INFOCOM. Toronto: IEEE, 2014: 64-72.
[6] LUO Y, PU L, ZUBA M, et al. Challenges and opportunities of nderwater cognitive acoustic networks [J]. IEEE Transactions on Emerging Topics in Computing, 2014, 2(2): 198-211.
[7] PARK M, RODOPLU V. UWANMAC: an energy-efficient MAC protocol for underwater acoustic wireless sensor networks [J]. IEEE Journal of Oceanic Engineering, 2007, 32(3): 710-720.
[8] CHIRDCHOO N, SOH W, CHUA K. Aloha-based MAC protocols with collision avoidance for underwater acoustic networks [C]∥Proceedings of IEEE INFOCOM. Singapore: IEEE, 2007: 2271-2275.
[9] MOLINS M, STOJANOVIC M. Slotted FAMA: a MAC protocol for underwater acoustic networks [C]∥Proceedings of MTS/IEEE Oceans. Singapore: IEEE, 2006: 1-7.
[10] GUO X, FRATER M, RYAN M. A propagation-delay-tolerant collision avoidance protocol for underwater acoustic sensor networks [C]∥ Proceedings of IEEE OCEANS. Singapore: IEEE, 2007: 1-6.
[11] 汪生泉,孙大军,张友文.一种高效的水下传感器网络MAC协议[J].传感器与微系统,2015, 34(1): 7679.
WANG Sheng-quan, SUN Da-jun, ZHANG You-wen. An efficient MAC protocol for underwater sensor networks [J]. Transducer and Microsystem Technologies, 2015, 34(1): 76-79.
[12] PENG Z, ZHU Y, ZHOU Z, et al. Cope-mac: a contention-based medium access control protocol with parallel reservation for underwater acoustic networks [C]∥Proceedings IEEE OCEANS. Sydney: IEEE, 2010: 1-10.
[13] FAN G, CHEN H, XIE L, et al. A hybrid reservation-based MAC protocol for underwater acoustic networks [J]. Ad Hoc Networks, 2013, 11(3): 1178-1192.
[14] XIE P, ZHOU Z, PENG Z, et al. Aqua-Sim: an NS-2 based simulator for underwater sensor networks [C]∥Proceedings of OCEANS.  Cabo Frio: IEEE, 2009: 1-7.
[15] SYED A, YE W, HEIDEMANN J. T-Lohi: a new class of MAC protocols for underwater acoustic sensor networks [C]∥Proceedings of the 27th IEEE International Conference on Computer Communications. Phoenix: IEEE, 2008: 231-235.

[1] 张伊璇,龚俭. 基于DNS流量的多层多域名检测与测量[J]. 浙江大学学报(工学版), 2020, 54(12): 2423-2429.
[2] 成海秀,李冠霖,张凌. 基于时间槽的可降带宽核心网视频业务动态资源预约算法[J]. 浙江大学学报(工学版), 2020, 54(9): 1746-1752.
[3] 李冬,鲁喻,于俊清. 软件定义网络中源地址验证绑定表安全[J]. 浙江大学学报(工学版), 2020, 54(8): 1543-1549.
[4] 武秋韵,丁伟. 基于动态暗网的互联网扫描行为分析[J]. 浙江大学学报(工学版), 2020, 54(8): 1550-1556.
[5] 齐平,束红. 智慧医疗场景下考虑终端移动性的任务卸载策略[J]. 浙江大学学报(工学版), 2020, 54(6): 1126-1137.
[6] 罗逸涵,程杰仁,唐湘滟,欧明望,王天. 基于自适应阈值的DDoS攻击态势预警模型[J]. 浙江大学学报(工学版), 2020, 54(4): 704-711.
[7] 陈蔚,刘雪娇,夏莹杰. 基于层次分析法的车联网多因素信誉评价模型[J]. 浙江大学学报(工学版), 2020, 54(4): 722-731.
[8] 游录金, 卢兴见, 何高奇. 云环境亚健康研究[J]. 浙江大学学报(工学版), 2017, 51(6): 1181-1189.
[9] 张欣欣, 徐恪, 钟宜峰, 苏辉. 网络服务提供商合作行为的演化博弈分析[J]. 浙江大学学报(工学版), 2017, 51(6): 1214-1224.
[10] 李建丽, 丁丁, 李涛. 基于二次聚类的多目标混合云任务调度算法[J]. 浙江大学学报(工学版), 2017, 51(6): 1233-1241.
[11] 王钰翔, 李晟洁, 王皓, 马钧轶, 王亚沙, 张大庆. 基于Wi-Fi的非接触式行为识别研究综述[J]. 浙江大学学报(工学版), 2017, 51(4): 648-654.
[12] 李晓东, 祝跃飞, 刘胜利, 肖睿卿. 基于权限的Android应用程序安全审计方法[J]. 浙江大学学报(工学版), 2017, 51(3): 590-597.
[13] 黄焱, 王鹏, 谢高辉, 安俊秀. 智能电网下数据中心能耗费用优化综述[J]. 浙江大学学报(工学版), 2016, 50(12): 2386-2399.
[14] 余洋,夏春和,原志超,李忠. 计算机网络协同防御系统信任启动模型[J]. 浙江大学学报(工学版), 2016, 50(9): 1684-1694.
[15] 齐平, 李龙澍, 李学俊. 具有失效恢复机制的云资源调度算法[J]. 浙江大学学报(工学版), 2015, 49(12): 2305-2315.