Please wait a minute...
浙江大学学报(工学版)
机械能源工程     
涡轮增压器旁通废气能量回收利用
樊之鹏, 王雷, 徐焕祥, 窦文博, 李道飞, 俞小莉
浙江大学 动力机械及车辆工程研究所,浙江 杭州 310027
Turbocharger bypassed exhaust energy recovery and utilization
FAN Zhi peng, WANG Lei, XU Huan xiang, DOU Wen bo, LI Dao fei, YU Xiao li
Power Machinery and Vehicular Engineering Institute, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1058 KB)   HTML
摘要:

以压缩空气作为储能介质,提出一种废气能量回收方法,用以回收高速大负荷工况下被废气阀旁通的废气能量.建立数值仿真模型,分析该方法的回收效果,并在循环工况中计算总能效率的提升幅度.结果表明:压缩空气最大回收功率约6.9 kW,旁通废气能量回收效率最高达55%|在NEDC、UDDS和HWFET这3种循环工况中,采用该方法均可使系统总能效率提升0.3%.针对回收的压缩空气,提出2种利用途径:作为车辆制动能量回收系统的进气气源,可使回收的气体压力和制动转矩增幅最高达到167%和140%|用于发动机进气总管补气,可使车辆加速性能提升约15%.

Abstract:

An exhaust energy recovery method was proposed to recover exhaust energy wasted through wastegate under high speed and heavy load conditions, in which compressed air was used as energy storage medium. The simulation model was built to analyze the recovery performance; the promotion of energy recovery efficiency under driving cycle condition was calculated. Results show that the maximum recovery power of compressed air is 6.9 kW and the maximum recovery efficiency of bypassed exhaust energy is 55%. Total energy efficiency of NEDC, UDDS and HWFET driving cycles increases by 0.3% using this utilization method. Further more, two approaches were proposed to utilize recovered compressed air. One is utilizing compressed air as the intake of vehicle braking energy recovery system, which can improve the recovery pressure and braking torque up to 167% and 140%, respectively. The other is utilizing compressed air to realize intake pipe air injection of engine, which can improve acceleration performance of vehicles up to 15%.

出版日期: 2016-12-08
:  TK 421  
基金资助:

国家“973”重点基础研究发展规划资助项目(2011CB707205);国家自然科学基金资助项目(51476143).

通讯作者: 俞小莉,女,教授.ORCID: 0000-0003-1846-7488.     E-mail: yuxl@zju.edu.cn
作者简介: 樊之鹏(1988—),男,博士生,从事车用动力能源多元化研究. ORCID: 0000-0002-1000-2056.E-mail: armyarmy999@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

樊之鹏, 王雷, 徐焕祥, 窦文博, 李道飞, 俞小莉. 涡轮增压器旁通废气能量回收利用[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.12.005.

FAN Zhi peng, WANG Lei, XU Huan xiang, DOU Wen bo, LI Dao fei, YU Xiao li. Turbocharger bypassed exhaust energy recovery and utilization. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.12.005.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.12.005        http://www.zjujournals.com/eng/CN/Y2016/V50/I12/2277

[1] 黄若,尚文涛,张威力.车用涡轮增压器瞬态加速性能及其评价方法研究[J].内燃机工程,2014, 35(2): 27-35.
HUANG Ruo, SHANG Wentao, ZHANG Weili. Study on turbocharger transient response characteristics and its evaluation method [J]. Chinese Internal Combustion Engine Engineering, 2014, 35(2): 27-35.
[2] 陆家祥.柴油机涡轮增压技术[M].北京:机械工业出版社,1999: 141-143.
[3] ANDERSEN J, KARLSSON E, GAWELL A. Variable turbine geometry on SI engines [R]. Detroit: SAE Technical Paper, 2006.
[4] MARCELLO C, ZHOU J, LISA FIORENTINI, et al. Modelbased analysis and optimization of turbocharged diesel engines with a variable geometry compressor and turbine system [R]. Detroit: SAE, 2012.
[5] 谢辉,李苏苏.重型车用柴油机废气发电复合涡轮行驶工况的适应性[J].天津大学学报:自然科学与工程技术版,2014,47(6): 558-564.
XIE Hui, LI Susu. Adaptive on driving cycles of waste energy recovery turbocompound systems on a heavy duty diesel engine [J]. Journal of Tianjin University: Science and Technology, 2014, 47(6): 558-564.
[6] ZHAO R, ZHUGE W, ZHANG Y, et al. Study of twostage turbine characteristic and its influence on turbocompound engine performance [J]. Energy Conversion and Management, 2015, 95: 414-423.
[7] TERDICH N. Mild hybridization via electrification of the air system: electrically assisted and variable geometry turbocharging impact on an offroad diesel engine [J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(3):031703.
[8] 徐广兰.电动增压器电控系统的设计及试验研究[D].天津:天津大学, 2010.
XU Guanglan. Design of electronic control unit forelectric supercharger [D]. Tianjin: Tianjin University,2010.
[9] TERDICH N, MARTINEZBOTAS R. Experimental efficiency characterization of an electrically assisted turbocharger [R]. Napoli: SAE Technical Paper, 2013.
[10] SCHECHTER M M. Regenerative compression braking: a low cost alternative to electric hybrids [R]. Michigan: SAE Technical Paper, 2000.
[11] 王雷,李道飞,叶锦.车用发动机压缩空气制动循环特性研究[J].浙江大学学报:工学版, 2014, 48(1): 56-62.
WANG Lei, LI Daofei, YE Jin. Investigation on performances of vehicle engine air compression braking [J]. Journal of Zhejiang University: Engineering Science, 2014, 48(1): 56-62.
[12] 王雷,李道飞,徐焕祥,等.发动机压缩空气再生制动理想热力循环分析[J].天津大学学报:自然科学版,2014,47(1): 21-27.
WANG Lei, LI Daofei, XU Huanxiang. Thermodynamic analysis of engine air compression cycle for regenerative braking [J]. Journal of Tianjin University: Science and Technology, 2014, 47(1): 21-27.
[13] DARLINGTON A, CIESLAR D, COLLINGS N, et al. Assessing boostassist options for turbocharged engines using 1D engine simulation and model predictive control [R]. Malmo: SAE Technical Paper, 2012.
[14] 戴澍凯.公交车用增压柴油机的补气研究[D].武汉:武汉理工大学, 2010.
DAI Shukai. Study on the air injection of bus turbocharged diesel engine [D]. Wuhan: Wuhan University of Technology, 2010.
[15] GILKES O S, MISHRA R, FIELDHOUSE J, et al. Simulation of the transient performance of turbocharged diesel engine featuring a two point air injection transient assist system [R]. Detroit: SAE, 2008.

[1] 徐辉, 蔡忆昔, 李小华, 施蕴曦, 李伟俊 . 低温等离子体降低柴油机微粒和NOx排放试验研究[J]. 浙江大学学报(工学版), 2016, 50(12): 2418-2423.
[2] 李孟涵,张强, 李国祥, 邵思东. 高压直喷天然气发动机HC排放[J]. 浙江大学学报(工学版), 2016, 50(2): 341-346.
[3] 谢阳,罗麒元,麻剑,许沧粟. 喷油嘴喷孔内流动特性数值仿真与试验分析[J]. 浙江大学学报(工学版), 2016, 50(1): 111-115.
[4] 方奕栋, 楼狄明, 胡志远, 谭丕强. 连续再生颗粒捕集器对生物柴油发动机颗粒及NOx排放的影响[J]. 浙江大学学报(工学版), 2015, 49(10): 1836-1841.
[5] 谢阳,姚子澍,麻剑,罗麒元,许沧粟. 柴油温度对喷孔内流动特性影响的仿真分析[J]. 浙江大学学报(工学版), 2015, 49(5): 938-943.
[6] 密刚刚,周文华,沈成宇,郭修其. 柴油机高速电磁阀驱动模块设计与故障诊断[J]. J4, 2012, 46(9): 1654-1659.
[7] 郭修其, 周文华, 郑朝武. 基于自动代码生成的共轨压力控制策略[J]. J4, 2011, 45(8): 1441-1445.
[8] 郭修其,周文华,郑朝武. 基于电路仿真的高压共轨电磁阀驱动电路设计[J]. J4, 2011, 45(5): 901-906.
[9] 周文华,竺春狄,苏瑜. 共轨柴油机电控系统若干关键技术[J]. J4, 2011, 45(1): 118-121.
[10] 郑旭,郝志勇,金阳,卢兆刚. 基于MEEMD的内燃机辐射噪声贡献[J]. J4, 2012, 46(5): 954-960.