Please wait a minute...
浙江大学学报(工学版)
机械工程     
水柱测量中的水下滑翔机转向性能
朱雨时,杨灿军,吴世军,徐晓乐,周璞哲,单鑫
浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Steering performance of underwater glider in water column monitoring
ZHU Yu shi, YANG Can jun, WU Shi jun, XU Xiao le, ZHOU Pu zhe, SHAN Xin
State Key Laboratory of Fluid Power and Mechatronic Systems,Zhejiang University,Hangzhou 310027,China
 全文: PDF(1776 KB)   HTML
摘要:

为了实现水体的水柱测量,设计一种具备大范围俯仰角调节能力的水下滑翔机.该滑翔机利用多自由度重心调节系统,能同时实现常规滑翔与竖直剖面监测.研究扩大水下滑翔机在水柱测量点之间的间隔并提高转向过程的效率的方法.采用经过扩展攻角的水动力模型、计算流体力学方法、运动仿真以及湖水试验,分析不同的侧翼位置以及转向俯仰角对应的转向性能.试验与仿真结果表明,将侧翼位置远离尾翼并在转向过程中保持较小的俯仰角,能够减小转向半径,提高转向率以及整个滑翔过程在目标方向上的覆盖范围.湖水试验显示,相对于常规的27°转向俯仰角,使用更优的5°转向俯仰角可以使转向半径降低66%,使转向率提高330%,使目标覆盖距离提高77%.

Abstract:

An underwater glider was presented for water column monitoring, which could adjust its pitch angle within a large range. The underwater glider could realize both normal gliding and vertical profile monitoring by using a gravity center adjustment module with multiple degrees of freedom. Research was conducted to enhance the steering efficiency for the underwater glider and enlarge the spacing between different water column checkpoints. An amended hydrodynamic model for large range attack angles was presented. Hydrodynamic coefficients computation, motion simulations, and a lake trial were conducted to analyze how the position of the wing and the steering pitch angle influenced the steering process. The results of the simulations and the lake trial show that enlarging the distance between the wing and the tail, and decreasing the steering pitch angle can reduce the steering radius, enhance the steering ratio, and enhance the horizontal deviation distance on the desired orientation. The lake trial shows that steering with the optimal pitch angle at 5° decreases the steering radius by 66%, increases the steering ratio by 330%, and increases the desired deviation distance by 77% over steering with a normal pitch angle at 27°.

出版日期: 2016-09-22
:  TP 242  
基金资助:

国家“863”高技术研究发展计划资助项目(2014AA09A513); 国家自然科学基金资助项目(51521064).

通讯作者: 杨灿军,男,教授,博导. ORCID: 0000-0002-3712-0538.     E-mail: ycj@zju.edu.cn
作者简介: 朱雨时(1989-),男,博士生,从事深海机电系统集成研究. ORCID: 0000-0002-8626-9187. E-mail: zhuyushi@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

朱雨时,杨灿军,吴世军,徐晓乐,周璞哲,单鑫. 水柱测量中的水下滑翔机转向性能[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.09.01.

ZHU Yu shi, YANG Can jun, WU Shi jun, XU Xiao le, ZHOU Pu zhe, SHAN Xin. Steering performance of underwater glider in water column monitoring. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.09.01.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.09.01        http://www.zjujournals.com/eng/CN/Y2016/V50/I9/1637

[1] HE R, WOOLLER M J, POHLMAN J W, et al. Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments [J]. The ISME Journal, 2012, 6(10): 1937-1948.
[2] WENG Y, YANG H, HE J, et al. Microstructure measurement form an underwater glider: motion analysis and experimental results [C]∥ OCEANS 2015. Genova: IEEE, 2015: 15.
[3] 孙芳, 郑忠明,陆开宏,等. 底泥微生物活性对蓝藻水华水柱及沉积物间隙水氮磷分布的影响[J]. 生态科学, 2011, 30(3): 217-222.
SUN Fang, ZHENG Zhongmin, LU Kaihong, et al. Microbe activities in the sediment and its influences on N、 P distribution of algae bloom water column and interstitial waters [J]. Ecological Science, 2011, 30(3): 217-222.
[4] GARNER S B, PATTERSON W F, PORCH C E, et al. Experimental assessment of circle hook performance and selectivity in the northern gulf of mexico recreational reef fish fishery [J]. Marine and Coastal Fisheries Dynamics Management and Ecosystem Science, 2014, 6(1): 235-246.
[5] DUNBABIN M, GRINHAM A. Experimental evaluation of an autonomous surface vehicle for water quality and greenhouse gas emission monitoring [C]∥ IEEE 2010 International Conference on Robotics and Automation. Anchorage: IEEE, 2010: 5268-5274.
[6] FAN S S, YANG C J, PENG S L, et al. Underwater glider design based on dynamic model analysis and prototype development [J]. Journal of Zhejiang University: Science C, 2013, 14(8): 583-599.
[7] CAO J, CAO J, YAO B, et al. Three dimensional model, hydrodynamics analysis and motion simulation of an underwater glider [C]∥ OCEANS 2015. Genova: IEEE, 2015: 18.
[8] ZHANG F, ZHANG F, TAN X. Tailenabled spiraling maneuver for gliding robotic fish [J]. Journal of Dynamic Systems Measurement and Control, 2014, 136(4): 112-120.
[9] SCHOFIELD O, KOHUT J, ARAGON D, et al. Slocum gliders: robust and ready [J]. Journal of Field Robotics, 2007, 24(6): 473-485.
[10]  ZHANG S, YU J, ZHANG A, et al. Spiraling motion of underwater gliders: modeling, analysis, and experimental results [J]. Ocean Engineering, 2013, 60(3): 113.
[11] YANG H, MA J. Optimization of displacement and gliding path and improvement of performance for an dunderwater thermal glider [J]. Journal of Hydrodynamics, 2010, 22(5): 618-625.
[12] FAN S S, WOOLSEY C. Elements of underwater glider performance and stability [J]. Marine Technology Society Journal, 2013, 47(3): 81-98.
[13] SINGH Y, BHATTACHARYYA S K,IDICHANDY V G. CFD approach to steady state analysis of an underwater glider [C]∥ OCEANS 2014. St. Johns: IEEE, 2014: 15.
[14] LIU F, WANG Y, NIU W, et al. Hydrodynamic performance analysis and experiments of a hybrid underwater glider with different layout of wings [C]∥ OCEANS 2014. Taipei: IEEE, 2014: 15.
[15] GEISBERT J B. Hydrodynamic modeling for autonomous underwater vehicles using computational and semiempirical methods [D]. Virginia: Virginia Polytechnic Institute and State University, 2007.
[16] NAKAMURA M, ASAKAWA K, HYAKUDOME T, et al. Hydrodynamic coefficients and motion simulations of underwater glider for virtual mooring [J]. IEEE Journal of Oceanic Engineering, 2013, 38(3): 581-597.
[17] MITCHELL B, WILKENING E, MAHMOUDIAN N. Developing an underwater glider for educational purposes [C]∥ IEEE International Conference on Robotics and Automation. Kulsruhe: IEEE, 2013: 3423428.
[18] SHERMAN J, DAVIS R, OWENS W B, et al. The autonomous underwater glider “Spray” [J]. Oceanic Engineering IEEE Journal, 2001, 26(4): 437-446.
[19] ISA K, ARSHAD M R, ISHAK S. A hybriddriven underwater glider model, hydrodynamics estimation, and an analysis of the motion control [J]. Ocean Engineering, 2014, 81: 111-129.
[20] SUN C, SONG B, WANG P. Parametric geometric model and shape optimization of an underwater glider with blendedwingbody [J]. International Journal of Naval Architecture and Ocean Engineering, 2015, 7(6): 995-1006.
[21] JIANG Q L, LEI H, WANG X D, et al. Balance parameters calculation method of underwater glider based on BP neural network [C]∥ OCEANS 2015. Genova: IEEE, 2015: 13.

[1] 高德东, 李强, 雷勇, 徐飞, 白辉全. 基于几何逼近法的斜尖柔性穿刺针运动学研究[J]. 浙江大学学报(工学版), 2017, 51(4): 706-713.
[2] 汤志东, 贠超. 全自动快换装置快速接头技术综述[J]. 浙江大学学报(工学版), 2017, 51(3): 461-470.
[3] 徐显金, 吴龙辉, 杨小俊, 汤亮, 杨永峰. 高压直流巡检机器人的磁力驱动方法[J]. 浙江大学学报(工学版), 2016, 50(10): 1937-1945.
[4] 张湧涛, 宋志伟, 王一, 粘山坡. 基于空间网格的机器人工作点位姿标定方法[J]. 浙江大学学报(工学版), 2016, 50(10): 1980-1986.
[5] 贾松敏,卢迎彬,王丽佳,李秀智,徐涛. 分层特征移动机器人行人跟踪[J]. 浙江大学学报(工学版), 2016, 50(9): 1677-1683.
[6] 刘亚男,倪鹤鹏,张承瑞,王云飞,孙好春. 基于PC的运动视觉一体化开放控制平台设计[J]. 浙江大学学报(工学版), 2016, 50(7): 1381-1386.
[7] 丁夏清,杜卓洋,陆逸卿,刘山. 基于混合势场的移动机器人视觉轨迹规划[J]. 浙江大学学报(工学版), 2016, 50(7): 1298-1306.
[8] 张阿龙, 章明, 乔明杰, 朱伟东, 梅标. 基于视觉测量的环形轨底座位姿标定方法[J]. 浙江大学学报(工学版), 2016, 50(6): 1080-1087.
[9] 江文婷, 龚小谨, 刘济林. 基于增量计算的大规模场景致密语义地图构建[J]. 浙江大学学报(工学版), 2016, 50(2): 385-391.
[10] 黄奇伟, 章明, 曲巍崴, 卢贤刚, 柯映林. 机器人制孔姿态优化与光顺[J]. 浙江大学学报(工学版), 2015, 49(12): 2261-2268.
[11] 李巍, 赵志刚, 石广田, 孟佳东. 多机器人并联绳牵引系统的运动学及动力学解[J]. 浙江大学学报(工学版), 2015, 49(10): 1916-1923.
[12] 马子昂,项志宇. 光流测距全向相机的标定与三维重构[J]. 浙江大学学报(工学版), 2015, 49(9): 1651-1657.
[13] 何雪军, 王进, 陆国栋, 陈立. 基于蚁群算法的机器人图像绘制序列优化[J]. 浙江大学学报(工学版), 2015, 49(6): 1139-1145.
[14] 袁康正,朱伟东,陈磊,薛雷,戚文刚. 机器人末端位移传感器的安装位置标定方法[J]. 浙江大学学报(工学版), 2015, 49(5): 829-834.
[15] 付兴伟, 吴功平, 周鹏, 于娜. 基于卡尔曼滤波的巡视机器人能耗估计[J]. 浙江大学学报(工学版), 2015, 49(4): 670-675.