Please wait a minute...
浙江大学学报(工学版)
通信工程、自动化技术     
基于OELM重构极限状态函数的可靠度计算方法
赖雄鸣1, 张勇1, 王成2, 言兰1, 缑锦2
1. 华侨大学 机电及自动化学院,福建 厦门 361021;2. 华侨大学 计算机科学与技术学院,福建 厦门 361021
Reconstruction of limit state function based on OELM for reliability computation
LAI Xiong-ming1, ZHANG Yong1, WANG Cheng2, YAN Lan1, GOU Jin2
1. College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China; 2. College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China
 全文: PDF(1180 KB)   HTML
摘要:

针对工程可靠度计算中极限状态函数不解析、非线性、计算量大这一问题,提出基于优化极限学习机高效重构极限状态函数的可靠度计算方法.该方法确定可靠度重要影响区域,在该区域内利用优化极限学习机泛化性能好的优点,按照一定的策略高效循环重构极限状态函数,最大限度地减少极限状态函数的计算次数.基于该重构极限状态函数进行重要抽样可靠性计算.通过实例分析证明,该方法的效率极高,既减少了极限状态函数的计算次数,又能够保证可靠度的计算精度.

Abstract:

A new efficient method for reconstructing the limit state function was presented based on the optimal extreme learning machine (OELM) for reliability computation aiming at the problem that the limit state function is implicit, nonlinear and computationally time-consuming in reliability estimation. The method determines the important area for reliability. In this area, the advantage of the good generalization for the OELM was used and loop reconstruction of the limit state function was conducted according to certain strategy. The computation of the limit state function was greatly reduced. The important sampling method was used to compute the reliability based on the surrogate reconstructive limit state function. Results show that the method is quite efficient since it can both reduce the computation of the limit state function and ensure the accurate computation for reliability.

出版日期: 2015-04-01
:  TU 311  
基金资助:

国家自然科学基金资助项目(51305143, 51205141, 51305142, 51405168);华侨大学高层次人才科研启动项目(12BS204)

作者简介: 赖雄鸣(1982—),男,讲师,从事机械可靠性设计的研究.E-mail: laixiongming@hqu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

赖雄鸣, 张勇, 王成, 言兰, 缑锦. 基于OELM重构极限状态函数的可靠度计算方法[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.04.012.

LAI Xiong-ming, ZHANG Yong, WANG Cheng, YAN Lan, GOU Jin. Reconstruction of limit state function based on OELM for reliability computation. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.04.012.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.04.012        http://www.zjujournals.com/eng/CN/Y2015/V49/I4/692

[1] 张惠峰,关富玲,侯国勇.考虑扭簧失效的桁架式可展开天线可靠性研究[J].浙江大学学报:工学版, 2010, 44(6): 1207-1212.
ZHANG Hui-feng, GUAN Fu-ling, HOU Guo-yong. Reliability analysis of truss deployable antenna considering torsional spring failure [J]. Journal of Zhejiang University: Engineering Science, 2010, 44(6): 1207-1212.
[2] CHOWDHURY R, RAO R B. Hybrid high dimensional model representation for reliability analysis [J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198 (5/6/7/8): 753-765.
[3] LAI X M, DUAN J A. Probabilistic approach to mechanism reliability with multi-influencing factors [J]. Proceedings of the Institution of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science, 2011,225 (C12): 2991-2996.
[4] 陈向前,董聪,闫阳.结构可靠性分析的自适应子集模拟方法[J].计算力学学报, 2013, 30(5): 627-632.
CHEN Xiang-qian, DONG Cong, YAN Yang. Structural reliability failure probability subset Simulatiom adaptive optimal sample size [J]. Chinese Journal of Computational Mechanics, 2013, 30(5): 627-632.
[5] 何红妮,吕震宙.正态变量相关情况下可靠性灵敏度分析的新方法[J].计算力学学报,2011,28(3): 436-443.
HE Hong-ni, LV Zhen-zhou. Correlative variable independent variable reliability sensitivity dependence variation coefficient [J]. Chinese Journal of Computational Mechanics, 2011, 28(3): 436-443.
[6] 张凯,李刚.基于改进降维法的可靠度分析[J].计算力学学报,2011, 28(2): 187-192.
ZHANG Kai, LI Gang. Reliability analysis based on the improved dimension reduction method [J]. Chinese Journal of Computational Mechanics, 2011, 28(2): 187-192.
[7] LEE J K, YANG Y S, RUY W S. A comparative study on reliability-index and target-performance-based probabilistic structural design optimization [J]. Computers and Structure, 2002, 80(3/4): 257-269.
[8] SANTOSH T V, SARAF R K, GHOSH A K. Optimum step length selection rule in modified HL-RF method for structural reliability [J]. International Journal of Pressure Vessels and Piping, 2006, 83(10): 742-774.
[9] 贡金鑫.结构可靠性指标求解的一种新的迭代方法[J].计算结构力学及其应用,1995, 12(3): 369-373.
GONG Jin-xin.A new algorithm for solving the structural reliability index [J].Computational Structural Mechanics and Applications, 1995, 12(3): 369-373.
[10] 周凌,贾宏光,安伟光.相关正态空间中改进的有限步长迭代法[J].工程力学, 2012, 29(11): 137-142.
ZHOU Ling, JIA Hong-guang, AN Wei-guang. Modified limit step length iteration algorithm in correlation normal space [J]. Engeering Mechanics, 2012, 29(11): 137-142.
[11] 杨杰,赵德有.结构可靠性指标计算的旋转梯度算法[J].大连理工大学学报,2011,51(2): 221-225.
YANG Jie, ZHAO De-you. Rotation gradient algorithm for calculating structural reliability index [J]. Journal of Dalian University of Technology, 2011, 51 (2): 221-225.
[12] 蒋友宝,冯健,孟少平.求解结构可靠性指标的线性可行方向算法[J].东南大学学报:自然科学版, 2006, 36(2): 312-315.
JIANG You-bao, FENG Jian, MENG Shao-ping. Linear feasible direction algorithm for calculation of reliability index of structure [J]. Journal of Southeast University: Natural Science Edition, 2006, 36(2): 312-315.
[13] HUANG G B, WANG D H, LAN Y. Extreme learning machines: a survey [J]. International Journal of Machine Leaning and Cybernetics, 2011, 2(2): 107-122.
[14]史峰,王辉,郁磊,等.智能算法[M].北京:北京航空航天大学出版社,2011.
[15] ROSENBLATT M. Remarks on a multivariate transformation [J]. Annals of Mathematical Statistics, 1952, 23(3): 470-472.
[16] 亢战,罗阳军.计算结构可靠度指标的修正迭代算法[J].工程力学,2008, 25(11): 20-26.
KANG Zhan, LUO Yang-jun. A modified iteration algorithm for structural reliability index evaluation [J]. Engineering Mechanics, 2008, 25(11): 20-26.

[1] 苏亮, 宋明亮, 董石麟, 罗尧治. 循环遗传聚类法稳定图自动分析[J]. 浙江大学学报(工学版), 2017, 51(3): 514-523.
[2] 潘炜, 吴慧, 李铁瑞, 高博青. 基于曲面展开的自由曲面网格划分[J]. 浙江大学学报(工学版), 2016, 50(10): 1973-1979.
[3] 崔璟, 尹凌峰, 郭小明, 唐敢. 基于残余位移的空间结构火灾温度场推定方法[J]. 浙江大学学报(工学版), 2016, 50(4): 720-726.
[4] 崔国勇, 崔昌禹, 涂桂刚. 自由曲面混凝土结构力学特性[J]. 浙江大学学报(工学版), 2015, 49(10): 1960-1966.
[5] 刘扬,鲁乃唯,蒋友宝. 结构体系可靠度分析的改进支持向量回归[J]. 浙江大学学报(工学版), 2015, 49(9): 1692-1699.
[6] 郭小农, 杨商飞, 罗永峰, 邱丽秋, 郁政华, 郑祥杰. 大跨度屋盖钢结构拆撑过程恒力千斤顶卸载法[J]. 浙江大学学报(工学版), 2014, 48(10): 1809-1815.
[7] 苏亮,索靖,宋明亮. 钢筋砼框架结构易损性评估的参数敏感性分析[J]. 浙江大学学报(工学版), 2014, 48(8): 1384-1390.
[8] 殷平,王彤,谢旭. 考虑桥墩轴力变化影响的刚构桥近场地震反应[J]. J4, 2013, 47(11): 1896-1903.
[9] 苏亮,索靖. 等效线性化方法在基于位移抗震设计中的应用[J]. J4, 2013, 47(11): 1926-1931.
[10] 余佳亮, 罗尧治. 张弦立体桁架抗扭刚度对结构稳定性能的影响[J]. J4, 2013, 47(8): 1353-1360.
[11] 罗尧治, 丁慧. 波纹表面月牙形悬挑屋盖风荷载特性[J]. J4, 2013, 47(6): 1063-1071.
[12] 钟振宇, 楼文娟. 设置非等截面TLCD高层建筑在风荷载作用下减振分析[J]. J4, 2013, 47(6): 1081-1087.
[13] 屠海滨,陈伟球,金贤玉. 基于压缩传感的EMI信号处理[J]. J4, 2012, 46(11): 2007-2012.
[14] 袁行飞, 周练. 基于机构位移模态子矩阵法的
铰接杆系机构奇异与运动分岔分析
[J]. J4, 2012, 46(6): 1074-1081.
[15] 徐海巍,余世策,楼文娟. 开孔结构内压传递方程的适用性分析[J]. J4, 2012, 46(5): 811-817.