Please wait a minute...
浙江大学学报(工学版)
机械工程     
末端执行器压脚气动伺服控制系统设计
方强1, 周庆慧2, 费少华1, 孟祥磊3, 巴晓甫3, 张燕妮3, 柯映林1
1. 浙江大学 流体传动及控制国家重点实验室,浙江 杭州 310027;2. 上海飞机制造有限公司,上海 200436;3. 西安飞机工业(集团)有限责任公司,陕西 西安 710089
Pneumatic servo control system design for pressure foot of an end-effector
FANG Qiang1, ZHOU Qing-hui2, FEI Shao-hua1, MENG Xiang-lei3, BA Xiao-fu3, ZHANG Yan-ni3, KE Ying-lin1
1. State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China; 2.Shanghai Aircraft Manufacturing Limited Company, Shanghai 200436, China; 3. AVIC Xi’an Aircraft Industry(Group) Limited Company, Xi’an 710089, China
 全文: PDF(1658 KB)   HTML
摘要:

针对机器人自动制孔系统中末端执行器压脚作用到工件表面时产生冲击问题,提出压脚机构位置缓冲控制方法.在建立压脚机构气动非线性模型基础上,通过摩擦力模型补偿,设计一种滑模控制器,以压脚与工件之间的相对位置作为控制输入,压脚相对于执行器的位移作为控制反馈,构成压脚机构位置全闭环控制系统,实现压脚机构快速定位到工件表面,同时减小对工件表面的冲击.实验结果表明,压脚机构经过位置缓冲控制后,对工件表面冲击力减小到无缓冲控制时的2.5%.

Abstract:

This paper presents a cushion control method to reduce the impact force when the pressure foot presses onto the workpiece in the robotic drilling process. The design of a slide mode controller, which is based on a non-linear model of the pneumatic servo system of the pressure foot and a friction compensation model, is presented. A closed-loop motion control system of the pressure foot is implemented, in which the relative position between the pressure foot and the workpiece is used as the command and the movement between the pressure foot and the feed axis of the end-effector is used as the feedback signal. By employing the developed motion control system, fast positioning of the pressure foot onto the workpiece can be achieved with low impact force. According to the experimental results, when controlled with the proposed controller, the impact force of the pressure foot onto the workpiece can be reduced to 2.5% of that without position servo cushion control.

出版日期: 2014-08-01
:  TP 273  
基金资助:

浙江省自然科学基金资助项目(LY13E050009);国家“十一五”科技支撑计划资助项目(2011BAF13B08).

通讯作者: 费少华, 男, 助教     E-mail: f307110@163.com
作者简介: 方强(1975—),男,副教授,主要从事伺服控制技术等研究.E-mail: fangqiang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

方强, 周庆慧, 费少华, 孟祥磊, 巴晓甫, 张燕妮, 柯映林. 末端执行器压脚气动伺服控制系统设计[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.08.014.

FANG Qiang, ZHOU Qing-hui, FEI Shao-hua, MENG Xiang-lei, BA Xiao-fu, ZHANG Yan-ni, KE Ying-lin. Pneumatic servo control system design for pressure foot of an end-effector. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.08.014.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.08.014        http://www.zjujournals.com/eng/CN/Y2014/V48/I8/1442

[1] ZHANG Rui, YUAN Pei-jiang, GONG Mao-zhen. Intelligent surface-normal adjustment system and application in drilling robot [C] ∥ Intelligent System Design and Engineering Application. Piscataway: IEEE, 2012: 696-699.
[2] ZHANG Lai-xi, WANG Xing-song. Dynamic control of a flexible drilling robot end-effector [C] ∥ Chinese Control and Decision Conference. Piscataway: IEEE, 2012: 2199-2204.
[3] BI Shu-sheng, LIANG Jie. Robotic drilling system for titanium structures [J]. International Journal of Advanced Manufacturing Technology, 2011, 54(5): 767-774.
[4] LIANG Jie, BI Shu-sheng. Design and experimental study of an end effector for robotic drilling [J]. International Journal of Advanced Manufacturing Technology, 2010, 50(1): 399-407.
[5] DEVLIEG R. ONCE (One-sided cell end effector) robotic drilling system [C] ∥ SAE 2002 Automated Fastening Conference and Exposition. Warrendale: SAE, 2002012626.
[6] 邓锋.采用标准关节机器人系统对飞机货舱门结构的自动钻铆[J].航空制造技术. 2010(9): 32-35.
DENG Feng. Automated fastening of aircraft cagro door structures with a standard articulating robot system [J]. Aeronautical Manufacturing Technology, 2010(9): 32-35.
[7] 周洪.气动伺服定位技术及其应用[J].液压与气动, 1999(1): 18-21.
ZHOU Hong. Pneumatic servo positioning technology and its application [J]. Hydraulic and Pneumatic, 1999(1): 18-21.
[8] 胡剑波,庄开宇.高级变结构控制理论及应用[M].西安: 西北工业大学出版社, 2008: 25.
[9] GULATI N, BARTH E. Non-linear pressure observer design for pneumatic actuators [C] ∥ Advanced Intelligent Mechatronics. Piscataway: IEEE, 2005: 783-788.
[10] CANUDAS C, OLSSON H, ASTROM K, et al. A new model for control of systems with friction [C] ∥ Automatic Control. Piscataway: IEEE, 1995, 40(3): 419-425.
[11] BELFORTE G, MATTIAZZO G, MAURO S. Measurement of friction force in pneumatic cylinders [J]. TriboTest, 2003, 10(1): 33-48.
[12] SIVAKUMAR S, KHORRAMI F. Friction compensation via variable structure control [C] ∥ Control Applications. Piscataway: IEEE, 1997: 645-650.

[1] 王青, 余小光, 乔明杰, 赵安安, 程亮, 李江雄, 柯映林. 基于序列二次规划算法的定位器坐标快速标定方法[J]. 浙江大学学报(工学版), 2017, 51(2): 319-327.
[2] 周锋, 顾临怡, 罗高生, 陈宗恒. 电液比例式推进系统的自适应反演滑模控制[J]. 浙江大学学报(工学版), 2016, 50(6): 1111-1118.
[3] 贾驰千, 冯冬芹. 基于模糊层次分析法的工控系统安全评估[J]. 浙江大学学报(工学版), 2016, 50(4): 759-765.
[4] 金鑫, 梁军. 基于动态PLS框架的多变量无静差预测控制[J]. 浙江大学学报(工学版), 2016, 50(4): 750-758.
[5] 费少华,刘丹,乔明杰,章明,方强. 端框移动平台双驱同步控制系统设计[J]. 浙江大学学报(工学版), 2016, 50(1): 85-92.
[6] 宋志强, 周献中, 李华雄. 多地面无人平台协同尾随跟踪[J]. 浙江大学学报(工学版), 2015, 49(12): 2349-2354.
[7] 王日俊, 白越, 续志军, 宫勋, 张欣, 田彦涛. 基于扰动观测器的多旋翼无人机机载云台模糊自适应跟踪控制[J]. 浙江大学学报(工学版), 2015, 49(10): 2005-2012.
[8] 仇翔, 宋海裕, 俞立. 基于平均驻留时间方法的牛鞭效应稳定化控制[J]. 浙江大学学报(工学版), 2015, 49(10): 1909-1915.
[9] 覃展斌, 陈飞飞, 金波, 张璐璐. 电液比例阀阀心位置控制PID自整定方法[J]. 浙江大学学报(工学版), 2015, 49(8): 1503-1508.
[10] 孙文达, 李平, 方舟. 无人直升机动态逆时滞不确定鲁棒最优控制[J]. 浙江大学学报(工学版), 2015, 49(7): 1326-1334.
[11] 窦亚冬,王青,李江雄 柯映林. 飞机数字化装配系统数据集成技术[J]. 浙江大学学报(工学版), 2015, 49(5): 858-865.
[12] 陶国良,左赫,刘昊. 气动肌肉-气缸并联平台结构设计及位姿控制[J]. 浙江大学学报(工学版), 2015, 49(5): 821-828.
[13] 罗中海, 孟祥磊, 巴晓甫, 费少华, 方强. 飞机大部件调姿平台力位混合控制系统设计[J]. 浙江大学学报(工学版), 2015, 49(2): 265-274.
[14] 罗高生, 顾临怡, 李林. 基于鲁棒观测器的肘关节鲁棒自适应控制[J]. 浙江大学学报(工学版), 2014, 48(10): 1758-1766.
[15] 曲巍崴, 石鑫, 董辉跃, 封璞加, 朱灵盛, 柯映林. 气动锤铆过程仿真分析与试验[J]. 浙江大学学报(工学版), 2014, 48(8): 1411-1418.