Please wait a minute...
浙江大学学报(工学版)
机械工程     
机器人自动化制孔系统
毕运波1, 李永超1, 顾金伟1, 郭英杰1, 闻立波2, 汪少斌2, 黄红2
1.浙江大学 机械工程学系,浙江 杭州 310027;2.陕西飞机工业集团有限公司,陕西 汉中 723213
Robotic automatic drilling system
BI Yun-bo1, LI Yong-chao1, GU Jin-wei1, GUO Ying-jie1, WEN Li-bo2, WANG Shao-bin2, HUANG Hong2
1. Department of Mechanical Engineering, Zhejinag University, Hangzhou 310027, China; 2. Shanxi Aircraft Industry(Group) Corporation LTD., Hanzhong 723213, China
 全文: PDF(1952 KB)   HTML
摘要:

为了实现飞机装配中高质量、高效率的自动化柔性制孔,架构一套集成激光测量技术、计算机控制技术、离线编程技术和机器人技术的自动化制孔系统.在自动化制孔过程中,孔位法向向量可以根据产品模型直接获取,但是飞机部件的实际外形和理论外形存在一定的偏差.为了减少制孔偏差,提出一种基于4个激光位移传感器的法向偏差修正技术.通过标定获得激光位移传感器的零点位置和激光方向,再根据传感器的测量值计算得到加工表面的实际法矢方向,通过调整机器人姿态实现孔位法向偏差的修正.试验结果表明,该系统的制孔效率为6 孔/min,法向精度优于0.5°,大幅提高飞机部件的制孔效率和装配质量.

Abstract:

A robotic automatic drilling system which integrates the technology of laser measurement, computer control, off-line programming and robotics is established in order to realize automatic flexible drilling with high efficiency and good quality in the field of aircraft assembly. In drilling process, the normal vector of the aircraft surface can be obtained through the 3D model, but there is deviation between the 3D model and the real surface of part. To improve the holes’quality, a surface-normal adjustment system based on four laser displacement sensors is developed. The sensor’origin point position and laser direction are obtained by calibration. Then with the measured values of laser displacement sensors, the surface-normal vector is calculated. The attitude of the robot is changed to make sure the drilling direction is close to the surface-normal direction. The drilling test results show that the system can increase the drilling efficiency and assembly quality of the aircraft components immensely. The efficiency of drilling can achieve 6 holes per minute, and the surface-normal accuracy is better than 0.5°.

出版日期: 2014-08-01
:  TP 24  
基金资助:

 国家自然科学基金资助项目(51275463);国家“十一五”科技支撑计划资助项目(2011BAF13B10); 浙江省自然科学基金资助项目(Y1090572);浙江省教育厅科研计划资助项目(Y200804302).

作者简介: 毕运波(1979—),男,副教授,从事飞机数字化装配技术研究,E-mail:zjubyb@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

毕运波, 李永超, 顾金伟, 郭英杰, 闻立波, 汪少斌, 黄红. 机器人自动化制孔系统[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.08.012.

BI Yun-bo, LI Yong-chao, GU Jin-wei, GUO Ying-jie, WEN Li-bo, WANG Shao-bin, HUANG Hong. Robotic automatic drilling system. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.08.012.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.08.012        http://www.zjujournals.com/eng/CN/Y2014/V48/I8/1427

[1] 袁红璇.飞机结构件连接孔制造技术[J].航空制造技术, 2007, 1: 96-99.
YUAN Hong-xuan. Manufacturing technology of connecting hole in aircraft structures [J]. Aeronautical Manufacturing Technology, 2007, 1: 96-99.
[2] RICK C, STEVE S, IAN M, et al. Hawde five axis wing surface drilling machine\[R\]. 2004012806, Washington, DC: SAE, 2004.
[3] BENJAMEN H, BRENT T, STEPHEN W. Composite automatic wing drilling equipment (cawde)\[R\]. 2006013162, Washington, DC: SAE, 2006.
[4] RUSSEL D, KEVIN S, ED F, et al. Once (one sided cell end effector) robotic drilling system\[R\]. 200212626, Washington, DC: SAE, 2002.
[5] JOE A, JOHN H, SIMON J, et al. Robotic drilling system for 737 aileron\[R\]. 2007013821, Washington, DC: SAE, 2007.
[6] RUSSELL D, TODD S. Applied accurate robotic drilling for aircraft fuselage\[R\]. 2010011836, Washington, DC: SAE, 2010.
[7] Carrolltor. aerospace robotic end effectors and system[EB/OL]. (2007)[2009-08-20]. http:∥www.eoa.com.
[8] 侯志霞,刘建东,薛贵军等.柔性导轨自动制孔设备控制技术[J].航空制造技术, 2009, 24: 59-64.
HOU Zhi-xia, LIU Jian-dong, XUE Gui-jun, et al. Control technology of flexible track automatic drilling machine [J]. Aeronautical Manufacturing Technology, 2009, 24: 59-64.
[9] 姚艳斌,毕树生,员俊峰,等.飞机部件机器人自动制孔控制系统设计与分析[J]. 中国机械工程, 2009, 21(17): 2021-2024.
YAO Yan-bin, BI Shu-sheng, YUAN Jun-feng, et al. Design and analyses of robot automatic drilling control system of aircraft components [J]. China Mechanical Engineering, 2009, 21(17): 2021-2024.
[10] 曲巍葳,董辉跃,柯映林.机器人辅助飞机装配制孔中位姿精度补偿技术[J].航空学报, 2011, 32(10): 1951-1960.
QU Wei-wei, DONG Hui-yue, KE Ying-lin. Pose accuracy compensation technology in robotic automatic drilling process [J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10): 1951-1960.
[11] 薛汉杰,张敬佩.蒙皮类部件钻孔法向的测量和调整[J].航空制造技术, 2010, 23: 60-62.
XUE Han-jie, ZHANG Jing-pei. Normal measurement and adjustment for skin drilling [J]. Aeronautical Manufacturing Technology, 2010, 23: 60-62.
[12] 邹冀华,周万勇,韩先国.飞机装配中基于3-RPS的并联机构法向调整算法[J].中国机械工程,2011, 22(5): 557-560.
ZOU Ji-hua, ZHOU Wan-yong, HAN Xian-guo. Normal adjusting algorithm of a 3-rps parallel mechanism in airplane assembly[J]. China Mechanical Engineering, 2011, 22(5): 557-560.
[13] 胡挺,吴立军.CATIA二次开发技术基础[M].北京:电子工业出版社,2006: 18117.
[14] 官云兰,程效军,施贵刚.一种稳健的点云数据平面拟合方法[J].同济大学学报:自然科学版, 2006,36(7): 981-984.
GUAN Yun-lan, CHENG Xiao-jun, SHIi Gui-gang. A robust method for fitting a plane to point clouds [J]. Journal of Tongji University: Natural Science. 2006, 36(7): 981-984.

[1] 高德东, 李强, 雷勇, 徐飞, 白辉全. 基于几何逼近法的斜尖柔性穿刺针运动学研究[J]. 浙江大学学报(工学版), 2017, 51(4): 706-713.
[2] 张铭奎, 程文明, 刘放. 助力外骨骼负载特征与驱动特征耦合效应[J]. 浙江大学学报(工学版), 2017, 51(4): 807-816.
[3] 汤志东, 贠超. 全自动快换装置快速接头技术综述[J]. 浙江大学学报(工学版), 2017, 51(3): 461-470.
[4] 潜龙昊, 胡士强, 杨永胜. 多节双八面体变几何桁架臂逆运动学解析算法[J]. 浙江大学学报(工学版), 2017, 51(1): 75-81.
[5] 陈鹏, 项基, 韦巍. 基于GWLN方法的冗余机械臂关节力矩约束控制[J]. 浙江大学学报(工学版), 2017, 51(1): 68-74.
[6] 张湧涛, 宋志伟, 王一, 粘山坡. 基于空间网格的机器人工作点位姿标定方法[J]. 浙江大学学报(工学版), 2016, 50(10): 1980-1986.
[7] 徐显金, 吴龙辉, 杨小俊, 汤亮, 杨永峰. 高压直流巡检机器人的磁力驱动方法[J]. 浙江大学学报(工学版), 2016, 50(10): 1937-1945.
[8] 朱雨时,杨灿军,吴世军,徐晓乐,周璞哲,单鑫. 水柱测量中的水下滑翔机转向性能[J]. 浙江大学学报(工学版), 2016, 50(9): 1637-1645.
[9] 贾松敏,卢迎彬,王丽佳,李秀智,徐涛. 分层特征移动机器人行人跟踪[J]. 浙江大学学报(工学版), 2016, 50(9): 1677-1683.
[10] 刘亚男,倪鹤鹏,张承瑞,王云飞,孙好春. 基于PC的运动视觉一体化开放控制平台设计[J]. 浙江大学学报(工学版), 2016, 50(7): 1381-1386.
[11] 丁夏清,杜卓洋,陆逸卿,刘山. 基于混合势场的移动机器人视觉轨迹规划[J]. 浙江大学学报(工学版), 2016, 50(7): 1298-1306.
[12] 张阿龙, 章明, 乔明杰, 朱伟东, 梅标. 基于视觉测量的环形轨底座位姿标定方法[J]. 浙江大学学报(工学版), 2016, 50(6): 1080-1087.
[13] 江文婷, 龚小谨, 刘济林. 基于增量计算的大规模场景致密语义地图构建[J]. 浙江大学学报(工学版), 2016, 50(2): 385-391.
[14] 黄水华,江沛,韦巍,项基,彭勇刚. 基于四元数的机械手姿态定向控制[J]. 浙江大学学报(工学版), 2016, 50(1): 173-179.
[15] 黄奇伟, 章明, 曲巍崴, 卢贤刚, 柯映林. 机器人制孔姿态优化与光顺[J]. 浙江大学学报(工学版), 2015, 49(12): 2261-2268.