Please wait a minute...
浙江大学学报(工学版)
机械工程     
基于自适应-模糊控制的六足机器人单腿柔顺控制
朱雅光, 金波, 李伟
浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州,310027
Leg compliance control of hexapod robot based on adaptive-fuzzy control
ZHU Ya-guang, JIN Bo, LI Wei
The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2062 KB)   HTML
摘要:

针对六足机器人在不同环境下进行柔顺控制的问题,提出一种基于自适应-模糊控制算法的腿部柔顺控制策略.在建立六足机器人结构模型和阻抗控制模型的基础上,推导间接自适应控制算法,并通过对该算法参数进行分析,得知该算法并不能满足在复杂环境下机器人脚力控制的要求.根据这一情况提出自适应-模糊控制算法,运用模糊控制算法对自适应控制参数进行修正,根据输入与输出的差异关系实时调整参数以得到满意的系统响应.通过对传统的间接自适应控制和改进后自适应-模糊控制算法的比较分析,结果表明,改进后的算法不仅在环境参数发生变化时能够很好跟随期望接触力,而且在躯体高度波动的情况下依然能够保证较小的接触冲击力和较高的稳态精度.这对于提高六足机器人的适应性有着重要意义.

Abstract:

Considering the compliance control problem of hexapod robot under different environment, a control strategy based on the adaptive-fuzzy control algorithm was raised. Based on the model of robot structure and impedance control, the indirect adaptive control algorithm was derived. And through the analysis of its parameters, it could be noticed that the algorithm does not meet the requirements of the robot compliance control in a complex environment. According to this situation, the fuzzy control algorithm was used to modify the parameters of adaptive control and satisfied system response could be obtained based on the adjustment in real time according to the difference between input and output. The comparative analysis of traditional indirect adaptive control and the improved adaptive-fuzzy control algorithm was presented. It can be verified that not only desired contact force can be tracked when the environmental parameters are changing, but also small contact impact and high steady-state accuracy can be guaranteed under the fluctuations in the body height. The control strategy has great significance to enhance the adaptability of the hexapod robot.

出版日期: 2014-08-01
:  TP 242  
基金资助:

国家自然科学基金创新研究群体科学基金资助项目(51221004);浙江省重点科技创新团队计划资助项目(2010R50036).

通讯作者: 金波, 男, 副教授     E-mail: bjin@zju.edu.cn
作者简介: 朱雅光(1986—), 男,博士生, 从事电液控制, 智能机器人控制研究. E-mail: zhuyaguang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

朱雅光, 金波, 李伟. 基于自适应-模糊控制的六足机器人单腿柔顺控制[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.08.011.

ZHU Ya-guang, JIN Bo, LI Wei. Leg compliance control of hexapod robot based on adaptive-fuzzy control. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.08.011.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.08.011        http://www.zjujournals.com/eng/CN/Y2014/V48/I8/1419

[1] LIN Y, SONG S M. Learning hybrid position/force control of a quadruped walking machine using a CMAC neural network [J]. Journal of Robotic Systems, 1997, 14(6): 483-499.
[2] KLEIN C A, OLSON K W, PUGH D R. Use of force and attitude sensors for locomotion of a legged vehicle over irregular terrain [J]. The International Journal of Robotics Research, 1983, 2(2): 317.
[3] IRAWAN A, NONAMI K. Optimal impedance control based on body inertia for a hydraulically driven hexapod robot walking on uneven and extremely soft terrain [J]. Journal of Field Robotics, 2011, 28(5): 690-713.
[4] SILVA M F, MACHADO J A, BARBOSA R S. Complex-order dynamics in hexapod locomotion[J]. Signal processing, 2006, 86(10): 2785-2793.
[5] HUANG Q J, NONAMI K. Humanitarian mine detecting six-legged walking robot and hybrid neuro walking control with position/force control [J]. Mechatronics, 2003, 13(8): 773-790.
[6] RNNAU A, KERSCHER T, DILLMANN R. Dynamic Position/Force Controller of a Four Degree-of-Freedom Robotic Leg [C]∥ Robot Motion and Control 2011. London: Springer, 2012: 117-126.
[7] OKU M, KOSEKI H, OHROKU H, et al. Rough terrain locomotion control of hydraulically actuated hexapod robot COMET-IV [C]∥ Proceedings of 2008 JSME Conference on Robotics and Mechatronics (ROBOMEC 2008). Nagano, Japan. ICRA, 2008.
[8] PAVONE M, ARENA P, FORTUNA L, et al. Climbing obstacle in bio‐robots via CNN and adaptive attitude control [J]. International Journal Of Circuit Theory And Applications, 2006, 34(1): 109-125.
[9] HOGAN N. Impedance control of industrial robots [J]. Robotics and Computer-Integrated Manufacturing, 1984, 1(1): 97-113.
[10] KAZEROONI H. Automated roboting deburring using electronic compliancy; Impedance control[C]∥ Proceedings of IEEE International Conference on Robotics and Automation. North Carolina: IEEE, 1987, 4: 1025-1032.
[11] YIN P, WANG P, LI M, et al. A novel control strategy for quadruped robot walking over irregular terrain[C] ∥ Robotics, Automation and Mechatronics (RAM), 2011 IEEE Conference on. Qingdao: IEEE, 2011, 4: 184-189.
[12] GALVEZ J A, ESTREMERA J, GONZALEZ DE SANTOS P. A new legged-robot configuration for research in force distribution [J]. Mechatronics, 2003, 13(8): 907-932.
[13] PALIS F, RUSIN V, SCHNEIDER A. Adaptive impedance/force control of legged robot systems [C]∥ Proc. Int. Conf. Climbing and Walking Robots. Kalsruhe, Germany: Prof. Engineering Publ, 2001: 323-329.
[14] YONEDA K, IIYAMA H, Hirose S. Sky-hook suspension control of a quadruped walking vehicle [C] ∥ Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on. San Diego, USA: IEEE, 1994: 999-1004.
[15] LIN Y, SONG S M. Learning hybrid position/force control of a quadruped walking machine using a CMAC neural network [J]. Journal of Robotic Systems, 1997, 14(6): 483-499.
16] HUANG Q, FUKUHARA Y. Posture and vibration control based on virtual suspension model using sliding mode control for six-legged walking robot [C].∥ 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing: IEEE, 2006: 5232-5237.
[17] GORINEVSKY D M, SHNEIDER A Y. Force control in locomotion of legged vehicles over rigid and soft surfaces [J]. The International Journal of Robotics Research, 1990, 9(2): 423.
[18] ZIELINSKA T, HENG J. Development of a walking machine: mechanical design and control problems [J]. Mechatronics, 2002, 12(5): 737-754.
[19] 金波,陈诚,李伟.基于能耗优化的六足步行机器人力矩分配[J]浙江大学学报:工学版, 2012, 46(07): 1168-1174.
JIN Bo, CHEN Cheng ,LI Wei, Optimization of energy-efficient torque distribution for hexapod walking robot  [J]. Journal of Zhejiang University: Engineering Science, 2012, 46(07): 1168-1174.
[20] SERAJI H, COLBAUGH R. Force tracking in impedance control [J]. The International Journal of Robotics Research, 1997, 16(1): 97-117.
[21] SURDILOVIC D, COJBASIC Z. Robust robot compliant motion control using intelligent adaptive impedance approach [C]∥ Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on. Detroit, USA: IEEE, 1999, 3: 2128-2133.

[1] 高德东, 李强, 雷勇, 徐飞, 白辉全. 基于几何逼近法的斜尖柔性穿刺针运动学研究[J]. 浙江大学学报(工学版), 2017, 51(4): 706-713.
[2] 汤志东, 贠超. 全自动快换装置快速接头技术综述[J]. 浙江大学学报(工学版), 2017, 51(3): 461-470.
[3] 徐显金, 吴龙辉, 杨小俊, 汤亮, 杨永峰. 高压直流巡检机器人的磁力驱动方法[J]. 浙江大学学报(工学版), 2016, 50(10): 1937-1945.
[4] 张湧涛, 宋志伟, 王一, 粘山坡. 基于空间网格的机器人工作点位姿标定方法[J]. 浙江大学学报(工学版), 2016, 50(10): 1980-1986.
[5] 贾松敏,卢迎彬,王丽佳,李秀智,徐涛. 分层特征移动机器人行人跟踪[J]. 浙江大学学报(工学版), 2016, 50(9): 1677-1683.
[6] 朱雨时,杨灿军,吴世军,徐晓乐,周璞哲,单鑫. 水柱测量中的水下滑翔机转向性能[J]. 浙江大学学报(工学版), 2016, 50(9): 1637-1645.
[7] 丁夏清,杜卓洋,陆逸卿,刘山. 基于混合势场的移动机器人视觉轨迹规划[J]. 浙江大学学报(工学版), 2016, 50(7): 1298-1306.
[8] 刘亚男,倪鹤鹏,张承瑞,王云飞,孙好春. 基于PC的运动视觉一体化开放控制平台设计[J]. 浙江大学学报(工学版), 2016, 50(7): 1381-1386.
[9] 张阿龙, 章明, 乔明杰, 朱伟东, 梅标. 基于视觉测量的环形轨底座位姿标定方法[J]. 浙江大学学报(工学版), 2016, 50(6): 1080-1087.
[10] 江文婷, 龚小谨, 刘济林. 基于增量计算的大规模场景致密语义地图构建[J]. 浙江大学学报(工学版), 2016, 50(2): 385-391.
[11] 黄奇伟, 章明, 曲巍崴, 卢贤刚, 柯映林. 机器人制孔姿态优化与光顺[J]. 浙江大学学报(工学版), 2015, 49(12): 2261-2268.
[12] 李巍, 赵志刚, 石广田, 孟佳东. 多机器人并联绳牵引系统的运动学及动力学解[J]. 浙江大学学报(工学版), 2015, 49(10): 1916-1923.
[13] 马子昂,项志宇. 光流测距全向相机的标定与三维重构[J]. 浙江大学学报(工学版), 2015, 49(9): 1651-1657.
[14] 何雪军, 王进, 陆国栋, 陈立. 基于蚁群算法的机器人图像绘制序列优化[J]. 浙江大学学报(工学版), 2015, 49(6): 1139-1145.
[15] 袁康正,朱伟东,陈磊,薛雷,戚文刚. 机器人末端位移传感器的安装位置标定方法[J]. 浙江大学学报(工学版), 2015, 49(5): 829-834.