Please wait a minute...
浙江大学学报(工学版)
土木工程     
响应面法优化有机质软土复合固化剂配方
李雪刚1,2,徐日庆1,2,畅帅1,2,廖斌1,2,王兴陈1,2
1. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州310058;
2. 浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州310058
Application of response surface methodology on optimizing mixture ratio of composite curing agent used to improve organic matter soil stabilization
LI Xue-gang1,2, XU Ri-qing1,2, CHANG Shuai1,2, LIAO Bin1,2, WANG Xing-chen1,2
1.Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou, 310058, China;
2.Key Laboratory of Soft Soils and Geoenvironmental Engineering, Ministry of Education,
Zhejiang University, Hangzhou, 310058,China;
 全文: PDF(1433 KB)   HTML
摘要:

为了改善水泥固化有机质软土的效果,配制出一种专门固化有机质软土的高效复合固化剂,从选择合适的矿物填料,减薄土壤双电层的厚度,提高土壤PH值,增强早期强度,调节水泥离子和黏土颗粒的活性等5个方面选定生石膏,生石灰,碳酸钠,FDN,水玻璃,三乙醇胺等6种添加剂来改善有机质软土的固化.将6种添加剂的质量分数作为影响固化土强度的6个因子,7 d龄期的无侧限抗压强度增长率作为响应值,利用响应面法来对添加剂进行优选和配方研究,并考察各影响因子的交互作用规律.结果表明:生石膏,碳酸钠,水玻璃和三乙醇胺对固化土强度增长率的线性效应明显;6种因子对强度增长率的曲面效应都明显;而生石灰和碳酸钠,FDN和水玻璃,以及水玻璃和三乙醇胺对强度增长率有交互作用的影响.最终得出,在腐植酸质量分数为6%,水泥质量与土样质量比为15%的前提下,复合固化剂配方为生石膏质量分数为4.85%,生石灰质量分数为3.79%,碳酸钠质量分数为1.42%,FDN质量分数为1.99%,水玻璃质量分数为5.06%,三乙醇胺质量分数为008%,此时固化土7 d的强度可以达到1 003 kPa.

Abstract:

To improve the effect of cement stabilizing organic matter soil and produce a kind of composite curing agent that is used to stabilize soft soil specially, gypsum, calcium oxide, sodium carbonate, FDN, sodium silicate, and triethanolamine were selected as six kinds of additives to improve the stabilization of organic matter soil considering the following five aspects: the choice of appropriate mineral filler, decrease of soil electrical double layer thickness, increase of soil PH value, enhancement of the early strength, and improvement of the activity between cement ion and clay particle. Since the content of every additive is a factor of impacting cement-soil strength and the growth rate of unconfined compressive strength is regard as response value, response surface methodology can be used to optimize the mixture ratio of the additives and analyze the interaction effect among the factors. The result shows that linear effect of gypsum, sodium carbonate, sodium silicate, and triethanolamine on the growth rate of strength are all obvious, and interaction effects between calcium oxide and sodium carbonate, FDN and sodium silicate, sodium silicate and triethanolamine are all obvious. Once humic acid content is 6%, cement content is 15%, the optimal mixture ratio of composite curing agent can be determined as follows: gypsum content=4.85%, calcium oxide content=3.79%, sodium carbonate content=1.42%, FDN content=1.99%, sodium silicate content=5.06% and triethanolamine content=0.08%. On this occasion, the strength of stabilize soil is 1003kPa

出版日期: 2014-11-26
:  TU 411  
基金资助:

国家自然科学基金资助项目(51178420).

通讯作者: 徐日庆,男,教授,博导.     E-mail: E-mail: xurq@zju.edu.cn
作者简介: 李雪刚(1986- ),男,博士生.主要从事软土地基处理方面的研究.E-mail: xuezi@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李雪刚,徐日庆,畅帅,廖斌,王兴陈. 响应面法优化有机质软土复合固化剂配方[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.05.013.

LI Xue-gang, XU Ri-qing, CHANG Shuai, LIAO Bin, WANG Xing-chen. Application of response surface methodology on optimizing mixture ratio of composite curing agent used to improve organic matter soil stabilization. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.05.013.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.05.013        http://www.zjujournals.com/eng/CN/Y2014/V48/I5/843

[1] HORPIBULSUK S, RACHAN R, SUDDEEPONG A. Assessment of strength development in blended cement admixed Bangkok clay [J]. Construction and Building Materials, 2011, 25: 15211531.
[2] 黄新, 许晟, 宁建国. 含铝固化剂固化软土的试验研究[J]. 岩石力学与工程学报, 2007, 26(1): 156161.
HUANG Xin, XU Sheng, NING Jian-guo. Experiment- al research on stabilizes soft soils by alumina bearing modifier [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(1): 156161.
[3] 邓小轩, 黄新, 宁建国. 外掺剂对水泥固化土强度的影响[J]. 岩土工程学报, 2011, 33(10): 16281633.
DENG Xiao-xuan, HUANG Xin, NING Jian-guo. Influnence of admixture on strength of stabilized soils [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 16281633.
[4] RAYMOND N, YONGA V, AHID R. Experimental study on instability of bases on natural and lime/cement -stabilized clayey soils [J]. Applied Clay Science, 2007, 35(3/4): 145282.
[5] 孟庆山, 杨超, 雷学文,等. 武汉东湖淤泥早强固化试验研究[J].岩土力学, 2010, 31(3): 707712.
MENG Qing-shan, YANG Chao, LEI Xue-wen, et al .Experimental study of early solidification of sludge in East Lake,Wuhan [J]. Rock and Soil Mechanics, 2010, 31(3): 707712.
[6] 郭印.淤泥质土的固化及力学特性的研究[D]. 杭州:浙江大学. 2007.
GUO Yin. Study on stabilization of muddy soil and mechanical properties of stabilized soil [D]. Hangzhou, Zhejiang University.2007.
[7] RAGONESE R, MACKA M, HUGHES J, et al. The use of Box-Behnken experimental design in the optimization and robustness testing of a capillary electrophorests method for the analysis of ethambutol hydrochloride in pharmaceutical formulation [J]. Pharm. Biomed. Anal. 2002,27: 9951007.
[8] Jiunn-Jyi Lay. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen [J]. Biotechnology and Bioengineering, 2000, 68(3): 269278.
[9]TAN I, AHMAD A, HAMEED B. Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology [J]. Chemical Engineering Journal, 2008, 137(3): 462470.
[10] REZA T, ASHRAF N. Optimization of ultrasonic-assisted extraction of natural antioxidants from rice bran using response surface methodology [J]. Ultrasonics Sonochemistry, 2011, 18(6): 12791286.
[11] LI Xue-gang, XU Ri-qing, RONG Xue-ning. Assessment of strength development in cement-admixed artificial organic soil with GX07 [J]. Journal of Central South Univ- ersity. 2012(19): 29993005.
[12] LIYANAA C, SHAHIDI F . Optimization of extraction of pheonolic compounds from wheat using response surface methodology [J]. Food Chem, 2005, 93: 4756.
[13] 彭家惠, 瞿金东. FDN减水剂对建筑石膏水化和硬化体结构的影响[J]. 建筑材料学报, 2007, 10(1): 1419.
PENG Jia-hui, QU Jin-dong et al. Influence of FDN superplasticizer on the hydration process and microstructure of hardened building gypsum paste[J]. Journal of Building Materials, 2007, 10(1): 1419.
[14] 丁锐. 水玻璃与粘土矿物之间表面反应的实验研究[J]. 岩土工程学报, 1999, 21(3): 334337.
Ding Rui. Experimental study of the surface reactions between clay minerals and water-glass [J]. Chinese Journal of Geotechnical Engineering, 1999, 21(3): 334337.
[15] 程鉴基. 水泥-水玻璃软土灌浆技术[J]. 煤炭学报, 1997, 22(3): 294299.
Chen Jian-ji. Cement and water glass grouting technique for soft soil [J]. Journal of china coal society, 1997, 22(3): 294299.
[16] 赵苏, 郭兴华, 田静. 三乙醇胺在水泥-水界面的吸附现象及其促凝作用[J]. 混凝土, 2010, 4: 6670.
ZHAO Su, GUO Xing-hua, TIAN Jing. Adsorption phenomenon of triethanolmine on the cement-water interface and accelerating effect [J]. Concrete, 2010, 4:6670.

[1] 焦卫国, 詹良通, 兰吉武,陈云敏. 黄土-碎石覆盖层毛细阻滞效应及设计厚度分析[J]. 浙江大学学报(工学版), 2016, 50(11): 2128-2134.
[2] 陈经浩, 黄建新, 陆胜勇, 李晓东, 严建华. 生活垃圾开放式燃烧炭黑的结构及污染物分析[J]. 浙江大学学报(工学版), 2016, 50(10): 1849-1854.
[3] 涂志斌,黄铭枫,楼文娟. 风浪耦合作用下桥塔基础体系的极限荷载效应[J]. 浙江大学学报(工学版), 2016, 50(5): 813-821.
[4] 张如如,赵云,徐文杰,黄博,凌道盛,韩黎明. 温度作用下机场跑道土基中水气运移规律分析[J]. 浙江大学学报(工学版), 2016, 50(5): 822-830.
[5] 曾兴, 詹良通, 钟孝乐, 陈云敏. 低渗透黏土中氯离子弥散作用离心模拟相似性[J]. 浙江大学学报(工学版), 2016, 50(2): 241-249.
[6] 郑健,李育超,陈云敏. 底泥固结对污染物运移影响的超重力离心试验模拟[J]. 浙江大学学报(工学版), 2016, 50(1): 8-15.
[7] 凌道盛,石吉森,张如如,王云岗. Hansbo类有限单元法的非连续分片试验[J]. 浙江大学学报(工学版), 2015, 49(11): 2142-2150.
[8] 徐日庆,徐丽阳,邓祎文,朱亦弘. 基于SEM和IPP测定软黏土接触面积的试验[J]. 浙江大学学报(工学版), 2015, 49(8): 1417-1425.
[9] 李静媛, 赵永志, 郑津洋. 加氢站高压氢气泄漏爆炸事故模拟及分析[J]. 浙江大学学报(工学版), 2015, 49(7): 1389-1394.
[10] 钟孝乐,詹良通,龚标,曾兴,陈云敏. 我国3种典型高岭土的固结、渗透及吸附特性[J]. 浙江大学学报(工学版), 2014, 48(11): 1947-1954.
[11] 李新亮,李素贞,申永刚. 交通荷载作用下埋地管道应力分析与现场测试[J]. 浙江大学学报(工学版), 2014, 48(11): 1976-1982.
[12] 徐日庆,畅帅,俞元洪,陆建阳. 基于响应面法的杭州海相软土固化强度模型[J]. 浙江大学学报(工学版), 2014, 48(11): 1941-1946.
[13] 涂志斌, 黄铭枫, 楼文娟. 基于Copula函数的建筑动力风荷载相关性组合[J]. 浙江大学学报(工学版), 2014, 48(8): 1370-1375.
[14] 李蓓, 田野, 赵若轶, 段安, 李宗津, 马红岩. 聚丙烯酸酯乳液改性砂浆微观结构与改性机理[J]. 浙江大学学报(工学版), 2014, 48(8): 1345-1352.
[15] 刘长殿, 孙红月, 康剑伟, 杜丽丽. 土体的充气阻渗试验[J]. J4, 2014, 48(2): 236-241.