Please wait a minute...
 J4  2012, Vol. 46 Issue (3): 441-447    DOI: 10.3785/j.issn.1008-973X.2012.03.009
 土木工程

1. 浙江大学 软弱土与环境土工教育部重点实验室, 浙江 杭州 310058; 2. 浙江大学宁波理工学院 土木建筑工程学院，

Study on properties of one-dimensional complex
nonlinear consolidation considering selfweight of saturated soils
HU An-feng1, HUANG Jie-qing1, XIE Xin-yu1, 2, WU Jian1, LI Jin-zhu1, LIU Kai-fu3
1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China;
2. School of Civil Engineering and Architecture, Ningbo Institute of  Technology, Zhejiang University, Ningbo 315100, China;
3. School of Civil Engineering and Architecture, Zhejiang SciTech  University, Hangzhou 310018, China
 全文: PDF  HTML

Abstract:

The nonlinear equations of permeability coefficient and effective stress were derived as functions of void ratio from compression test data of Ningbo soft clay. Based on one-dimensional nonlinear large strain consolidation equation using void ratio as a control variable, the effect of self-weight of soil on consolidation was taken into account. The behavior of self-weight consolidation is strongly nonlinear. It is difficult to find analytical solutions to its controlling equation. Partial differential finite element software FLEXPDE was used to solve the consolidation equation. Distributions of effective stress and excess pore water pressure with depth were presented under conditions of different ratios between compression index and permeability index. The numerical results considering complex nonlinearity of soil were in better agreement with the laboratory test data than those obtained under the assumptions for constant consolidation coefficient and other parameters during consolidation. If the compression-permeability index ratio is not equal to 1.0, the results using these two methods differ significantly. In this case, the nonlinearity of permeability and compressibility should be considered in order to understand the real distributions of effective stress and excess pore water pressure with depth during consolidation.

 : TU 443

 服务 把本文推荐给朋友 加入引用管理器 E-mail Alert RSS 作者相关文章

#### 引用本文:

HU An-feng, HUANG Jie-qing, XIE Xin-yu, WU Jian, LI Jin-zhu, LIU Kai-fu. Study on properties of one-dimensional complex
nonlinear consolidation considering selfweight of saturated soils. J4, 2012, 46(3): 441-447.

#### 链接本文:

 ［1］ MIKASA M. The consolidation of soft clay—a new consolidation theory and its application［G］∥ Japanese Society of Civil Engineers.Civil Engineering in Japan,［S.l.］:［s.n.］,1965: 21-26． ［2］ GIBSON R E, ENGLAND G L, HUSSEY M J L. The theory of one dimensional consolidation of saturated clays, I. Finite non linear consolidation of thin homogeneous layers［J］. Geotechnique, 1967, 17(2): 261-273． ［3］ POSKITT T J. Consolidation of saturated clay with variable permeability and compressibility［J］. Geotechnique, 1969, 19(2): 234-252． ［4］ GIBSON R E, SCHIFFMAN R L, CARGILL K W. The theory of one dimensional consolidation of saturated clays, II. Finite non linear consolidation of thick homogeneous layers［J］. Canadian Geotechnical Journal, 1981, 18(2): 280-293． ［5］ MESRI G, ROKHSAR A. Theory of consolidation for clays［J］. Journal of Geotechnical Engineering, ASCE, 1974, 100(GT4): 889-904. ［6］ DUNCAN J M. Limitation of conventional Analysis of consolidation settlement［J］. Journal of Geotechnical Engineering, ASCE, 1993, 119(9): 1333-1359. ［7］ 谢康和,郑辉,LEO C J. 变荷载下饱和软黏土一维大应变固结解析理论［J］. 水利学报,2003, 48(10): 6-13． XIE KangHe, ZHENG Hui, LEO C J. Analytical solution for 1D large strain consolidation of saturated soft clay under timedepending loading［J］. Journal of Hydraulic Engineering, 2003,48 (10): 6-13． ［8］ XIE Xinyu, ZHANG Jifa, ZENG Guoxi. Similarity solution of selfweight consolidation problem for saturated soil［J］. Applied Mathematics and Mechanics, 2005, 26(9): 1061-1066． ［9］ CAI Yuanqiang, GENG Xueyu, XU Changjie. Solution of onedimensional finite strain consolidation of soil with variable compressibility under cyclic loadings $J$. Computers and Geotechnics, 2007, 34(1): 31-40． ［10］ SL2371999 土工试验规程［S］. 北京：中国水利水电出版社,1999． SL2371999 Specification of soil test ［S］. Beijing: China Water Power Press,1999． ［11］ 谢康和,齐添,胡安峰,等. 基于GDS的黏土非线性渗透特性试验研究［J］. 岩土力学, 2008, 29(2): 420-424． XIE Kanghe, QI Tian, HU Anfeng, et al. Experimental study on nonlinear permeability characteristics of Xiaoshan clay［J］. Rock and Soil Mechanics, 2008, 29(2): 420-424. ［12］ 谢康和,周谨,董亚钦. 循环荷载作用下地基一维非线性固结解析解［J］. 岩石力学与工程学报, 2006, 25(1): 21-26． XIE Kanghe, ZHOU Jin, DONG Yaqin. Analytical solution for onedimensional nonlinear consolidation of soil under cyclic loadings［J］. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(1): 21-26. ［13］ BERRY P L,WILKINSON W B. The radial consolidation of clay soils［J］. Geotechnique, 1969, 19(2): 253-284．
 [1] 郭林, 蔡袁强, 谷川, 王军. 循环荷载下软黏土回弹和累积变形特性[J]. J4, 2013, 47(12): 2111-2117. [2] 梁孟根, 梁甜, 陈云敏. 自由场地液化响应特性的离心机振动台试验[J]. J4, 2013, 47(10): 1805-1814. [3] 韩同春, 豆红强, 马世国, 王福建. 考虑雨水重分布对均质无限长边坡稳定性的研究[J]. J4, 2013, 47(10): 1824-1829. [4] 吴永,裴向军,何思明,李新坡. 降雨型泥石流对沟床侵蚀的水力学机理[J]. J4, 2013, 47(9): 1585-1592. [5] 陈卓,周建,温晓贵,陶燕丽. 电极反转对电渗加固效果的试验研究[J]. J4, 2013, 47(9): 1579-1584. [6] 蔡袁强,刘新峰,郭林,孙宏磊,曹志刚. 飞机荷载作用下超载预压软土地基的长期沉降[J]. J4, 2013, 47(7): 1157-1163. [7] 吴世明, 王湛, 王立忠. 大断面过江隧道运营期受力变形健康监测分析[J]. J4, 2013, 47(4): 595-601. [8] 吴有霞, 王湛, 钟润辉, 李玲玲, 冯智宏, 王起. 软基煤场堆载挡风墙桩基桩土共同作用分析[J]. J4, 2013, 47(3): 502-507. [9] 林存刚, 张忠苗, 吴世明, 崔迎辉. 基于极限拉应变法的盾构掘进注浆隆起 对上覆结构的影响[J]. J4, 2012, 46(12): 2215-2223. [10] 徐长节,李碧青,蔡袁强. 自平衡法试桩的承载特性试验研究[J]. J4, 2012, 46(7): 1262-1268. [11] 韩同春,黄福明. 双层结构土质边坡降雨入渗过程及稳定性分析[J]. J4, 2012, 46(1): 39-45. [12] 孙德安, 陈立文, 甄文战. 平面应变条件下水土耦合超固结黏土分叉分析[J]. J4, 2010, 44(10): 1938-1943. [13] 李仁民, 刘松玉, 方磊, 杜延军. 采用随机生长四参数生成法构造黏土微观结构[J]. J4, 2010, 44(10): 1897-1901.