Please wait a minute...
J4  2011, Vol. 45 Issue (5): 851-857    DOI: 10.3785/j.issn.1008-973X.2011.05.013
机械工程     
基于盾构掘进参数的BP神经网络地层识别
朱北斗,龚国芳,周如林,刘国斌
浙江大学 流体传动及控制国家重点实验室,浙江 杭州 310027
Identification of strata with BP neural network
based on parameters of shield driving
ZHU Bei-dou, GONG Guo-fang, ZHOU Ru-lin, LIU Guo-bin
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

分析3种典型地层中盾构推进力、推进速度、刀盘扭矩、刀盘转速4个掘进参数的变化规律.应用BP神经网络建立一个以相邻2个采样时刻的盾构推进力、推进速度、刀盘扭矩、刀盘转速共8个掘进参数为输入,地层编码为输出的地层识别模型.通过60组训练样本数据对模型进行训练,训练误差控制在8×10-7以内,并用30组预测样本数据对该模型加以预测检验,预测成功率达到93%左右.结果表明,基于盾构掘进参数的BP神经网络地层识别模型能够实现盾构掘进参数与地层之间的良好非线性映射,可以在盾构掘进施工中利用掘进参数实现对地层的在线识别.

Abstract:

The variation rules of the thrust force, penetration rate, cutterhead torque and cutterhead speed were analyzed in three typical strata. By used of BP neural network the strata recognition model was established with the input of 8 parameters of shield driving from two adjacent sample time and the output of strata code. The strata recognition model was trained by 60 groups of sample data and the training error is controlled within 8×10-7. Another 30 groups of sample data were also adopted for testing the accuracy of the strata recognition and the strata recognition model achieves about 93% at precision. The results show that the strata recognition model with BP neural network can realize the non linear mapping between parameters of shield driving and strata, achieving on-line strata recognition based on parameters of shield driving.

出版日期: 2011-11-24
:  TP 183  
基金资助:

国家“863”高技术研究发展计划资助项目(2007AA041806);国家“973”重点基础研究发展规划资助项目(2007CB714004).

通讯作者: 龚国芳,男,教授,博导.     E-mail: gfgong@zju.edu.cn
作者简介: 朱北斗(1985- ),男,江苏徐州人,博士生,从事机电液控制方面的研究.E-mail: zhubeidou@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

朱北斗,龚国芳,周如林,刘国斌. 基于盾构掘进参数的BP神经网络地层识别[J]. J4, 2011, 45(5): 851-857.

ZHU Bei-dou, GONG Guo-fang, ZHOU Ru-lin, LIU Guo-bin. Identification of strata with BP neural network
based on parameters of shield driving. J4, 2011, 45(5): 851-857.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.05.013        https://www.zjujournals.com/eng/CN/Y2011/V45/I5/851

[1] 韩风险.特殊地质情况下土压平衡盾构掘进施工技术[J] .铁道建筑技术,2007(4):9-19.
HAN Fengxian. Earth pressure balance tunneling machine driving technology in special geological environment[J]. Railway Construction Technology, 2007(4): 9-19.
[2] 杜建华,沈红云.广州地铁复杂地质条件下的土压平衡盾构掘进技术研究[J].隧道建设,2006,26(4):68-71.
DU Jianhua, SHEN Hongyun. Study on EPB shield machine construction technology under complex geological conditions achieved in Guangzhou metro [J]. Tunnel Construction, 2006, 26(4): 68-71.
[3] 韩文忠.复杂地质条件下土压平衡盾构掘进控制技术[J] . 石家庄铁道学院学报,2004(5):12-14.
HAN Wenzhong. The diggingcontrol technology with the equilibrium shield under complex ground conditions[J]. Journal of Shijiazhuang Railway Institute, 2004(5): 12-14.
[4] EBRAHIM F, JAMAL R. Correlation of tunnel convergence with TBM operational parameters and chip size in the Ghomroud tunnel, Iran [J]. Tunnelling and Underground Space Technology, 2008(23): 700-710.
[5] STEFAN L, RUDIGER G, PETER O, et al. Seismic investigations of the Piora Basin using Swave conversions at the tunnel face of the Piora adit (Gotthard Base Tunnel) [J]. International Journal of Rock Mechanics & Mining Sciences, 2008(45): 86-93.
[6] ZETTLER A H, POISEL R, LAKOVITS D, et al. Control system for tunnel boring machines (TBM): a first investigation towards a hybrid control system [J]. International Journal of Rock Mechanics & Mining Sciences, 1998(35): 120.
[7] 邢彤.盾构刀盘液压驱动与控制系统研究[D].杭州:浙江大学,2008.
XING Tong. Research on hydraulic drive and control system of the cutter head in shield tunneling machine[D]. Hangzhou: Zhejiang University, 2008.
[8] 张国英,王娜娜,张润生,等.基于主成分分析的BP神经网络在岩性识别中的应用[J] .北京石油化工学院学报,2008(3):43-46.
ZHANG Guoying, WANG Nana, ZHANG Runsheng, et al. Application of principal component analysis and BP neural network in identifying lithology [J]. Journal of Beijing Institute of Petro—chemical Technology, 2008, 16(3): 43-46.
[9] 周劲辉,鄢泰宁,屠厚泽.识别所钻地层的人工神经网络法应用[J] .中国地质大学学报,2000,25(6):642-646.
ZHOU Jinhu, YAN Taining, TU Houze. Application of artificial neural network to identification of drilled strata [J]. Journal of China University of Geosciences, 2000, 25(6): 642-646.
[10] 胡国良.盾构模拟实验平台电液控制系统关键技术研究[D].杭州:浙江大学,2006.
HU Guoliang. Research into electrohydraulic control system for a simulator test rig of shield tunneling machine [D]. Hangzhou: Zhejiang University, 2006.
[11] SUCHATVEE S, HERBERT H E. Artificial neural networks for predicting the maximum surface settlement caused by EPB shield tunneling [J]. Tunnelling and Underground Space Technology, 2006(21): 133-150.
[12] 徐丽娜.神经网络控制[M] .北京:电子工业出版社,2003:18-22.
[13] 田景文,高美娟.人工神经网络算法研究及应用[M] .北京:北京理工大学出版社,2006:35-38.

No related articles found!