Please wait a minute...
J4  2011, Vol. 45 Issue (5): 846-850    DOI: 10.3785/j.issn.1008-973X.2011.05.012
机械工程     
基于负熵最大化的机械振源半盲分离方法
周晓峰,杨世锡
浙江大学 机械工程学系,浙江 杭州 310027
Semi-blind sources separation of mechanical vibrations base on
maximization of negentropy
ZHOU Xiao-feng, YANG Shi-xi
Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

为了快速、有效地分离传感器观测信号中的机械振源信号,提出一种负熵最大化的机械振源半盲分离方法.该方法根据目标振源的振动特性构造相应的参考源信号,将参考源信号和分离的目标振源信号的均方误差作为约束条件引入到盲源分离的对照函数中,通过求解约束最优问题,实现目标机械振源信号的分离.试验结果表明,基于负熵最大化的半盲分离方法能快速、有效地分离出目标振源信号,为机械振动信号的监测与故障诊断提供一种新的方法和思路.

Abstract:

In order to separate mechanical vibration sources form sensor signals rapidly and effectively, a novel method was proposed, which was based on maximization of negentropy for semi-blind sources separation of mechanical vibrations. The reference signals that carry some information of sources were constructed. The mean square error between reference signals and separated sources was incorporated into contrast function as the constraints. The interested mechanical vibration source was obtained by solving the constrained optimization problem. The proposed method was compared with the conventional BSS method, and the experiment results showed that the proposed method is very effective. It is possible to apply the new method to vibration signals analysis and mechanical fault diagnosis.

出版日期: 2011-11-24
:  TN 911.7  
基金资助:

国家自然科学基金资助项目(50675194);国家“863”高技术研究发展计划资助项目(2008AA04Z410);国家科技重大专项资助项目(2009ZX04014-101-01).

通讯作者: 杨世锡,男,教授.     E-mail: Yangsx@zju.edu.cn
作者简介: 周晓峰(1974-),男,浙江宁波人,博士生,从事智能检测与信号处理、机械状态监测与故障诊断研究.E-mail:zxf@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

周晓峰,杨世锡. 基于负熵最大化的机械振源半盲分离方法[J]. J4, 2011, 45(5): 846-850.

ZHOU Xiao-feng, YANG Shi-xi. Semi-blind sources separation of mechanical vibrations base on
maximization of negentropy. J4, 2011, 45(5): 846-850.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.05.012        https://www.zjujournals.com/eng/CN/Y2011/V45/I5/846

[1] 李舜酩. 机械振动信号盲源分离的时域方法 [J]. 应用力学学报, 2005, 22(04):579-585.
LI Shunming. Blind source separation of mechanical vibration signal in time domain [J].Chinese Journal of Applied Mechanics, 2005,22(04):579-585.
[2] 叶红仙, 杨世锡, 杨将新. 多振源卷积混合的时域盲源分离算法 [J]. 机械工程学报, 2009, 45(1):189-194.
YE Hongxian, YANG Shixi, YANG Jiangxin. Temporal blind source separation algorithm for convolution mixtures with multi sources [J]. Journal of Mechanical Engineering, 2009, 45(1): 189-194.
[3] 孙晖, 朱善安. 调制故障源信号盲分离的经验模态分解法 [J]. 浙江大学学报:工学版, 2006, 40(2) :258-261.
SUN Hui, ZHUN Shanan. Empirical mode decomposition for blind separation of modulation fault source signals [J]. Journal of Zhejiang University:Engineering Science, 2006, 40(2): 258-261.
[4] YPMA A. Learning methods for machine vibration analysis and health monitoring [D]. Delft: Delft University of Technology, 2001.
[5] LIU X, RANDALL R B, ANTONI J. Blind separation of internal combustion engine vibration signals by a deflation method [J]. Mechanical Systems and Signal Processing, 2008, 22(5): 1082-1091.
[6] GELLE G, COLAS M, SERVIERE C. Blind source separation: a tool for rotating machine monitoring by vibrations analysis [J]. Journal of Sound and Vibration, 2001, 248(5): 865-885.
[7] 胥永刚, 张发启, 何正嘉. 独立分量分析及其在故障诊断中的应用[J]. 振动与冲击, 2004, 23(2):104-108.
XU Yonggang, ZHANG Faqi, HE Zhengjia. Independent component analysis and its applications to fault diagnosis [J]. Journal of Vibration and Shock,2004, 23(2):104-108.
[8] ANTONI J. Blind separation of vibration components: principles and demonstrations [J]. Mechanical Systems and Signal Processing, 2005, 19(6): 1166-1180.
[9] WEI L, RAJAPAKSE J C. Approach and applications of constrained ICA [J]. IEEE Transactions on Neural Networks, 2005, 16(1): 203-212.
[10] LU W, RAJAPAKSE J C. Ica with reference [J]. Neurocomputing, 2006, 69(16/18): 2244-2257.
[11] HYVARINEN A, KARHUNEN J, OJA E. Independent component analysis [M]. New York: Wiley, 2001.
[12] HYVARINEN A. Fast and robust fixedpoint algorithms for independent component analysis [J]. IEEE Transactions on Neural Networks, 1999, 10(3): 626-634.

[1] 刘凤霞, 潘翔, 宫先仪. 螺旋线阵匹配场三维定位[J]. J4, 2013, 47(1): 62-69.
[2] 刘志坤, 刘忠, 付学志, 宁小玲. 改进的变步长自适应滤波及Eckart加权抑噪算法[J]. J4, 2012, 46(6): 1014-1020.
[3] 熊炘, 杨世锡, 周晓峰. 旋转机械振动信号的固有模式函数降噪方法[J]. J4, 2011, 45(8): 1376-1381.
[4] 吴一全,张晓杰,吴诗婳,张生伟. 基于混沌PSO或分解的二维最小误差阈值分割[J]. J4, 2011, 45(7): 1198-1205.
[5] 金文光, 张正宇, 唐少华. 2FSK信号DSTFT解调算法中的同步新方法[J]. J4, 2011, 45(6): 1027-1031.
[6] 葛鹏,李奇, 冯华君,徐之海,陈跃庭. 双三次样条插值联合变换相关器亚像素探测技术[J]. J4, 2010, 44(11): 2198-2202.
[7] 谢强军, 侯迪波, 黄平捷, 张光新, 周泽魁. 基于半隐差分的单参数水平集快速分割[J]. J4, 2010, 44(8): 1496-1501.
[8] 张少蔚, 徐东, 袁博, 赖晓平. 复数FIR滤波器椭圆误差约束最小二乘设计[J]. J4, 2010, 44(7): 1338-1342.
[9] 凌波, 顾伟康, 杜歆. H264整帧丢失下的错误隐藏机制[J]. J4, 2009, 43(09): 1732-1738.