Please wait a minute...
J4  2013, Vol. 47 Issue (1): 62-69    DOI: 10.3785/j.issn.1008-973X.2013.01.009
计算机技术﹑电信技术     
螺旋线阵匹配场三维定位
刘凤霞1, 潘翔1, 宫先仪1,2
1. 浙江大学 信息与通信工程研究所,浙江 杭州 310027;2. 杭州应用声学研究所,浙江 杭州 310012
Matched-field three-dimensional source localization
using spiral line array
LIU Feng-xia1, PAN Xiang1,GONG Xian-yi1,2
1.Institute of Information and Communication Engineering, Zhejiang University, Hangzhou 310027, China;
2. Hangzhou Applied Acoustics Research Institute, Hangzhou 310012, China
 全文: PDF  HTML
摘要:

研究短混合阵声源三维定位方法,将阵设计为双螺旋线阵(DSLA),利用垂直孔径和水平孔径同时估计声源方位、距离和深度.阵的任意两阵元三维坐标均不同,具有复杂的空间取向性.为了提高短DSLA定位的可靠性,采用宽带中频信号进行声源定位.仿真和实验结果表明,利用宽带信号可以进一步提高DSLA定位性能.关于环境失配问题,采用L∞估计器进行解决.仿真结果表明,由于空间取向的复杂性,DSLA较倾斜阵具有更好的源定位性能;在较少环境先验知识的前提下,L∞估计器比MAP 估计器和Bartlett估计器具有更好的环境宽容性.

Abstract:

Three-dimensional source localization was investigated using a short hybrid array. The array was designed to be a double spiral line array (DSLA) in order to simultaneously estimate the acoustic source bearing, range and depthby using its horizontal and vertical aperture. Arbitrary two elements of the array are different from each other in three-dimensional coordinates, resulting in complexity of spatial orientation. Broadband midfrequency signals were used for improvement of the localization reliability of the short DSLA. Simulation and experimental results demonstrate that using broadband signals can further improve the DSLA localization performance. Additionally, L∞ estimator was used to solve the problem of environmental mismatch. Simulation results show that DSLA performs better than a tilted linear array in source localization due to complexity of spatial orientation, and L∞ estimator has better environmental tolerance than MAP estimator and Bartlett estimator with a little priori knowledge of ocean environments.

出版日期: 2013-01-01
:  TN 911.7  
基金资助:

国家自然科学基金资助项目(60872066, 61171148)

通讯作者: 潘翔,男,副教授.     E-mail: panxiang@zju.edu.cn
作者简介: 刘凤霞(1987-),女,硕士生,从事水声信号处理的研究. E-mail: liufxzju@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘凤霞, 潘翔, 宫先仪. 螺旋线阵匹配场三维定位[J]. J4, 2013, 47(1): 62-69.

LIU Feng-xia, PAN Xiang,GONG Xian-yi. Matched-field three-dimensional source localization
using spiral line array. J4, 2013, 47(1): 62-69.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.01.009        http://www.zjujournals.com/eng/CN/Y2013/V47/I1/62

[1] BOOTH N O, ABAWI A T, SCHEY P W. Detectability of low-level broadband signals using adaptive matched-field processing with verticle aperture arrays [J]. IEEE Oceanic Engineering, 2000, 25(3): 296-313.
[2] TOLLEFSEN D, DOSSO S E. Three-dimensional source tracking in an uncertain environment [J]. Acoustical Society of America, 2009, 125(5): 2909-2917.
[3] TOLLEFSEN D, DOSSO S E. Three-dimensional source tracking in an uncertain environment via Bayesian marginalization [J]. Acoustical Society of America, 2010, 128(3): EL111EL116.
[4] YARDIM C, GERSTOFT P, HODGKISS W S. Tracking of geoacoustic parameters using Kalman and particle filters filtering [J]. Acoustical Society of America, 2009, 125(2): 746-760.
[5] HARRISON B F. Broadband matchedfield localization performance in uncertain environments using a short array [J]. Computational Acoustics, 2001, 9(3): 957-972.
[6] SUPPAPPOLA S B, HARRISON B F. Experimental matchedfield localization results using a short verticle array and midfrequency signals in shallow water [J]. IEEE Oceanic Engineering, 2004, 29(2): 511-523.
[7] SOARES C, JERSUS S M. Broadband matchedfield processing: coherent and incoherent approaches [J]. Acoustical Society of America, 2003, 113(5): 2587-2598.
[8] HARRISON B F. An L∞norm estimator for environmentally robust, shallowwater source localization [J]. Acoustical Society of America, 1999, 105(1): 252-259.
[9] CZENSZAK S P, KROLIK J L. Robust wideband matchedfield processing with a short verticle array [J]. Acoustical Society of America, 1997, 101(2): 749-759.
[10] SHOREY J A, NOLTE L W, KROLIK J L. Computationally efficient Monte Carlo estimation algorithms for matched field processing in uncertain ocean environments [J]. Computational Acoustics, 1994, 2(3): 285-314.
[11] YARDIM C, MICHALOPOULOU Z H, GERSTOFT P. Peer-reviewed technical communication an overview of sequential Bayesian Filtering in ocean acoustics [J]. IEEE Oceanic Engineering, 2011, 36(1): 107-113.
[12] ARULAMPALAMM S, MASKELL S, GORDON N. A tutorial on particle filters for online nonlinear/nonGaussian Bayesian tracking [J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
[13] JEMMOTT C W. Model-based recursive Bayesian state estimation for single hydrophone passive sonar localization [D]. Pennsylvania: Pennsylvania State University, 2010.
[14] YARDIM C, GERSTOFT P, HODGKISS W S. Geoacoustic and source tracking using particle filtering: experimental results [J]. Acoustical Society of America, 2010, 128(1): 75-87.

No related articles found!