Please wait a minute...
J4  2009, Vol. 43 Issue (11): 1965-1969    DOI: 10.3785/j.issn.1008-973X.2009.11.004
(浙江大学 信息与通信工程研究所,浙江 杭州 310027)
All digital realization of logarithm automatic gain control loop
PENG Xiao-shuang, YANG Zhi-min, LI Shi-ju
(Institute of Information and Communication Engineering, Zhejiang University, Hangzhou 310027, China)
 全文: PDF(788 KB)   HTML

给出一种基于现场可编程门阵列(FPGA)的全数字实现对数模型自动增益控制器(AGC)的构架.该构架中的增益调整电路主要由平方包络检测器、基于坐标旋转数字计算(CORDIC)迭代结构的高效超越函数处理器、基于数字无限冲击响应(IIR)的环路积分器和参数可配置的控制逻辑发生器组成.包络检测器只要用阶数很低的有限冲击响应(FIR)滤波器就可以满足滤波性能.采用对称系数的转置型结构使得滤波器的乘法器个数降低一半.数字无限长冲激响应滤波器IIR逼近模拟积分器,通过简单近似处理得到一个结构和实现非常简单的数字积分器.基于CORDIC迭代的超越函数处理器可以很方便地实现对数转换器,该结构采用迭代算法可以输出任意精度的结果,并且容易实现电路资源和电路速度的折中,避免了传统算法对存储器要求高的缺点.采用全并行的流水结构使得电路最高工作时钟可达206 MHz.最后给出基于FPGA器件的设计结果和硬件仿真,实验结果和理论分析完全吻合.


An all digital architecture was presented to realize the logarithm modeled automatic gain control (AGC) loop based on field programmable gates array (FPGA) platform. The architecture is mainly made up of four modules, including envelope detector, coordinator rotation digital computer (CORDIC) based iterative realization of effective hyperbolic function, infinite impulse response (IIR) based loop filter, and reconfigurable control logic generator. Envelope detector can meet the filter performance requirement only with finite impulse response (FIR) filter of low order. Symmetric coefficient based transposed architecture reduces the number of multipliers in filter to the half. By approximation to analog integrator and suitable process, IIR based filter can simplify the architecture of digital integrator. The logarithm convertor is easy to be realized by CORDIC based iterative hyperbolic function processor. The architecture can also output with random precision, and realize the compromise of circuit resources and speed, which overcomes the high demand for random access memory (RAM) in traditional algorithms. With fully parallel pipeline architecture, the maximum working clock can achieve 206 MHz. Finally, the realization results based on the FPGA processor and the hardware simulation were given. Experimental results were consistent well with the theoretical analysis.

出版日期: 2009-11-01
:  TN 850.3  


通讯作者: 李式巨,男,教授.     E-mail:
作者简介: 彭晓霜(1979-),男,湖北通城人,硕士,主要从事MIMO OFDM系统研究.
E-mail Alert


彭晓霜, 杨志敏, 李式巨. 对数自动增益控制环路全数字实现[J]. J4, 2009, 43(11): 1965-1969.

BANG Xiao-Shuang, YANG Zhi-Min, LI Shi-Ju. All digital realization of logarithm automatic gain control loop. J4, 2009, 43(11): 1965-1969.


[1] 杨小牛,楼才义,徐建良. 软件无线电原理与应用[M]. 北京:电子工业出版社, 2001: 1-8.
[2] MARTINEZ I. Automatic gain control (AGC) circuits theory and design [D]. Toronto: University of Toronto, 2001: 2-7.
[3] VICTOR W, BROCKMAN M. The application of linear servo theory to the design of AGC loops [J]. Proceedings of the IRE, 1960, 48: 234-238.
[4] ANDRAKA R. A survey of CORDIC algorithms for FPGA based computers [C]∥ Proceedings of the ACM/SIGDA Sixth International Symposium on Field Programmable Gate Arrays. Mentery: ACM, 1998: 191-200.
[5] KHOURY J M. On the design of constant settling time AGC circuits [J]. IEEE Transactions on Circuits Systems II: Analog and Digital Signal Processing, 1998, 45(3): 283-294.
[6] 张立志,饶龙记,邬江兴. 自动增益控制环路方程的一种简化处理方法及环路稳定时间分析[J]. 通信学报, 2005, 26(6): 94-99.
ZHANG Li-zhi, RAO Long-ji, WU Jiang-xing. Simple treatment method to automatic gain control loop equations and analysis of loop settling time [J]. Journal on Communications, 2005, 26(6): 94-99.
[7] 陈佩清. 数字信号处理教程[M]. 2版. 北京:清华大学出版社, 2001: 246-248.
[8] 华东师范大学数学系. 数学分析[M]. 3版. 北京:高等教育出版社, 2001: 52-55.
[9] Cordic algorithm and implementations, lecture notes on digital algorithms [EB/OL]. [2003-08-31]. http:∥
[10] WALTHER J S. A unified algorithm for elementary functions [C]∥ Spring Joint Computer Conference. Alantic City: [s.n.], 1971, 38: 379-385.
[11] TURKOWSKI K. Fixed-point trigonometry with CORDIC iterations [M]∥ Graphics Gems. San Diego: Academic Press Professional, 1990: 494-497.

No related articles found!