Please wait a minute...
J4  2009, Vol. 43 Issue (11): 1958-1964    DOI: 10.3785/j.issn.1008-973X.2009.11.003
自动化技术、计算机技术     
基于扰动观测器的电动负载模拟器控制系统设计
方强1,马杰2,毕运波1,刘伟3
(1.浙江大学 浙江省先进制造技术重点研究实验室,浙江 杭州 310027; 2.哈尔滨工业大学 航天学院,黑龙江哈尔滨 150001; 3.西安飞机工业(集团)有限责任公司 总装厂,陕西 西安 710089)
Disturbance observer based controller design for electric dynamic load simulator
FANG Qiang1, MA Jie2, BI Yun-bo1, LIU Wei3
(1. Zhejiang Province Key Laboratory of Advanced Manufacturing Technology, Zhejiang University, Hangzhou 310027, China;
2. Astronautics School, Harbin Institute of Technology, Harbin 150001, China;
3. Final Assemble Factory, Xian Aircraft Industry (Group) Co. Ltd, Xian 710089, China)
 全文: PDF(1112 KB)   HTML
摘要:

针对以永磁同步电机作为驱动元件的电动负载模拟器,提出基于扰动观测器的双回路控制系统设计方法.采用机理建模方法,建立负载模拟器数学模型,并通过实验确定系统标称对象模型参数和模型不确定性权函数.以舵机扰动抑制要求为性能权函数,通过控制结构等价变换,采用H∞混合灵敏度方法设计内回路扰动观测器.外回路设计以拓展力矩加载频带为性能权函数设计控制器.对某型电动负载模拟器控制系统的设计和调试结果表明,在最大加载力矩为50 N?m时,电动负载模拟器动态加载平坦段最高频率达到15 Hz,静态加载精度小于0.1 N?m.

Abstract:

An electric dynamic load simulator (EDLS) which can reproduce on-ground the aerodynamic hinge moment of control surface is an essential rig for conducting performance and stability tests of aircraft actuation systems. An EDLS driven by permanent magnetic synchronous motor and dual loop control structure based on disturbance observer (DOB) was presented, for increasing its dynamic load bandwidth and precision. The EDLS model was built by mechanism theory, and then the model parameters and the uncertainty weight function were obtained by experiments. Through the equivalence structure transform, DOB based internal-loop controller was designed by the H∞ mixed sensitivity optimization method for restraining the disturbance of the rudders active motion, and the external-loop controller based on the EDLS nominal model was designed for enlarge the torque loading bandwidth. The experiments of the actual system demonstrated that under the maximum loading torque of 50 N?m, the dynamic loading performance of the EDLS could reach 15 Hz, and its static loading precision was less than 0.1 N?m.

出版日期: 2009-11-01
:  TP 273  
通讯作者: 毕运波,男,讲师.     E-mail: zjubyb@zju.edu.cn
作者简介: 方强(1975-),男,浙江绍兴人,讲师,从事伺服控制技术等研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

方强, 马杰, 毕运波, 等. 基于扰动观测器的电动负载模拟器控制系统设计[J]. J4, 2009, 43(11): 1958-1964.

FANG Jiang, MA Jie, BI Yun-Bei, et al. Disturbance observer based controller design for electric dynamic load simulator. J4, 2009, 43(11): 1958-1964.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2009.11.003        http://www.zjujournals.com/eng/CN/Y2009/V43/I11/1958

[1] NAM Y S. QFT force loop design for the aerodynamic load simulator [J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(4): 1384-1392.
[2] WANG Ming-yan, GUO Ben, GUAN Yu-dong, et al. Design of electric dynamic load simulator based on rec-urrent neural networks [C]∥ International Electric Mac-hines and Drives Conference. San Antonio: IEEE, 2003, 1: 207-210.
[3] LEE S Y, CHO H S. A fuzzy controller for an aeroload simulator using phase plane method [J]. IEEE Transactions on Control Systems Technology, 2001, 9(6): 791-801.
[4] KAWAJI S, SUENAGA Y, MAEDA T, et al. Control of cutting torque in the drilling process using disturbance observer [C]∥ Proceedings of American Control Conference. Seattle: IEEE, 1995, 1: 723-728.
[5] TESFAYE A, LEE H S, TOMIZUKA M. A sensitivity optimization approach to design a disturbance observer in digital motion control systems [J]. IEEE/ASME Transactions on mechatronics, 2000, 5(1): 32-38.
[6] OHNISHI K, SHIBATA M, MURAKAMI T. Motion control for advanced mechatronics [J]. IEEE/ASME Transactions on Mechatronics, 1996, 1(1): 56-67.
[7] UMENO T, KANEKO T, HORI Y. Robust servo system design with two degree of freedom and its application to novel motion control of robot manipulators [J]. IEEE Transactions on Industry Electronics, 1993, 40(5): 473-485.
[8] YAMADA K, KOMADA S, ISHIDA M, et al. Analysis and classical control design of servo system using high order disturbance observer [C]∥ Proceedings of International Conference of Industrial Electronics, Control, and Instrumentation. New Orleans: IEEE, 1997, 28(2): 4-9.
[9] KEMPF C J, KOBAYASHI S. Disturbance observer and feedforward design for a high-speed direct-drive positioning table [J]. IEEE Transactions on Control System Technology, 1999, 7(1): 513-526.
[10] KIM B K, CHUNG W K. Advanced disturbance observer design for mechanical positioning systems [J]. IEEE Transactions on Industry Electronics, 2003, 30(6): 1207-1216.

[1] 程森林,李雷,朱保卫,柴毅. WSN定位中的RSSI概率质心计算方法[J]. J4, 2014, 48(1): 100-104.
[2] 方强, 陈利鹏, 费少华, 梁青霄, 李卫平, 赵金锋. 定位器模型参考自适应控制系统设计[J]. J4, 2013, 47(12): 2234-2242.
[3] 罗继亮, 王飞,邵辉,赵良煦. 基于约束转换的Petri网最优监控器设计[J]. J4, 2013, 47(11): 2051-2056.
[4] 任雯, 胥布工. 基于FI-SNAPID算法的经编机多速电子送经系统开发[J]. J4, 2013, 47(10): 1712-1721.
[5] 李奇安, 金鑫. 对角CARIMA模型多变量广义预测近似解耦控制[J]. J4, 2013, 47(10): 1764-1769.
[6] 叶凌云,陈波,张建,宋开臣. 基于最少拍无波纹算法的高精度动态标准源反馈控制[J]. J4, 2013, 47(9): 1554-1558.
[7] 孟德远,陶国良,钱鹏飞,班伟. 气动力伺服系统的自适应鲁棒控制[J]. J4, 2013, 47(9): 1611-1619.
[8] 叶凌箭,马修水. 基于软测量技术的化工过程优化控制策略[J]. J4, 2013, 47(7): 1253-1257.
[9] 黄晓烁,何衍,蒋静坪. 基于互联网无刷直流电机传动系统的控制策略[J]. J4, 2013, 47(5): 831-836.
[10] 贺乃宝, 高倩, 徐启华, 姜长生. 基于自适应观测器的飞行器抗干扰控制[J]. J4, 2013, 47(4): 650-655.
[11] 朱予辰,冯冬芹,褚健. 基于EPA的块数据流通信调度与控制[J]. J4, 2012, 46(11): 2097-2102.
[12] 刘志鹏, 颜文俊. 预粉磨系统的智能建模与复合控制[J]. J4, 2012, 46(8): 1506-1511.
[13] 朱康武, 顾临怡, 马新军, 胥本涛. 水下运载器多变量鲁棒输出反馈控制方法[J]. J4, 2012, 46(8): 1397-1406.
[14] 费少华,方强,孟祥磊,柯映林. 基于压脚位移补偿的机器人制孔锪窝深度控制[J]. J4, 2012, 46(7): 1157-1161.
[15] 于晓明, 蒋静坪. 基于神经网络延时预测的自适应网络控制系统[J]. J4, 2012, 46(2): 194-198.