Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (2): 191-199    DOI: 10.3785/j.issn.1008-9209.2022.03.021
Special Topic: Insect Physiology and Biochemistry & Pest Biological Control     
Analysis of structures and expression patterns of the flavin-containing monooxygenase family genes in Bursaphelenchus xylophilus
Xin HAO1(),Ruina TAN2,Jie CHEN1,Yang LI3,Jingxin CAO1,Jian DIAO1,Zhen DENG2,Ping ZHANG4,Ling MA1,2()
1.School of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, China
2.Innovation Center for Forest Protection Technology of Heilongjiang Province, Northeast Forestry University, Harbin 150040, Heilongjiang, China
3.State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
4.Heilongjiang Provincial Key Laboratory of Forest Sustainable Management and Environmental Microbiology Engineering, Northeast Forestry University, Harbin 150040, Heilongjiang, China
Download: HTML   HTML (   PDF(4894KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Flavin-containing monooxygenases (FMOs) participate in endogenous and exogenous metabolisms in organisms, and exist widely in plants, animals and microorganisms. To explore the function of Bursaphelenchus xylophilus FMOs (BxFMOs) in the host colonization and in response to the nematicide stress, we firstly screened and identified 13 Bxfmos from the genome of B. xylophilus by means of bioinformatics, and then analyzed the physicochemical properties, evolutionary development, protein structures, and gene expression patterns of these genes. The results showed that, the Bxfmos distributed on the five chromosomes; their numbers of amino acids were from 432 to 572; their molecular weights were between 49.77 kDa and 66.09 kDa; and their isoelectric points were between 6.26 and 9.27. The structures of BxFMOs were relatively conservative. The gene expression patterns revealed that the BxFMOs had significant effects on the colonization of B. xylophilus and its respondence to nematicidal agents. The above results have important guiding significance and theoretical value for exploring the colonization mechanism of B. xylophilus in the host and seeking the molecular targets to control B. xylophilus.



Key wordsBursaphelenchus xylophilus      flavin-containing monooxygenase family genes      protein structure      bioinformatics     
Received: 02 March 2022      Published: 27 April 2023
CLC:  S763.49  
Corresponding Authors: Ling MA     E-mail: xinhao@nefu.edu.cn;maling63@163.com
Cite this article:

Xin HAO,Ruina TAN,Jie CHEN,Yang LI,Jingxin CAO,Jian DIAO,Zhen DENG,Ping ZHANG,Ling MA. Analysis of structures and expression patterns of the flavin-containing monooxygenase family genes in Bursaphelenchus xylophilus. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(2): 191-199.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.03.021     OR     https://www.zjujournals.com/agr/Y2023/V49/I2/191


松材线虫黄素单加氧酶家族基因结构与表达模式分析

黄素单加氧酶(flavin-containing monooxygenases, FMOs)是一类广泛存在于植物、动物、微生物中,主要参与调控生物体对内源性及外源性物质代谢的生物酶家族。为探究松材线虫FMOs(Bursaphelenchus xylophilus FMOs, BxFMOs)在宿主中定殖和响应杀线剂胁迫过程中所发挥的功能,本研究首先通过生物信息学手段从松材线虫基因组中筛选并鉴定了13个BxFMOs家族基因,随后对获得的BxFMOs家族基因进行理化特性、进化发育、蛋白结构及基因表达模式分析。结果表明:BxFMOs家族成员分布于5条染色体上,氨基酸数目为432~572个,分子量为49.77~66.09 kDa,等电点为6.26~9.27,其结构较为保守。基因表达模式分析揭示,BxFMOs家族对松材线虫定殖和响应杀线剂胁迫具有显著影响。本研究对探索松材线虫在宿主中的定殖机制和寻求防治松材线虫分子靶标具有重要的指导意义和理论价值。


关键词: 松材线虫,  黄素单加氧酶家族基因,  蛋白结构,  生物信息学 

蛋白编号

Protein ID

本文编号

ID in this article

氨基酸数目

Number of

amino acids

分子量

Molecular

weight/kDa

等电点

Isoelectric

point

脂肪族氨基酸指数

Aliphatic

index

总平均亲水性

Grand

average of

hydrophilicity

分子式

Formula

不稳定

系数

Instability

index

BXYJ_LOCUS4BxFMO154362.058.7679.83-0.356C2812H4318N754O791S2242.77
BXYJ_LOCUS93BxFMO248155.159.0072.39-0.407C2454H3808N686O704S3042.71
BXYJ_LOCUS94BxFMO355263.488.9576.30-0.327C2853H4411N771O803S3541.59
BXYJ_LOCUS281BxFMO455763.618.1777.50-0.345C2875H4431N763O816S2735.52
BXYJ_LOCUS282BxFMO555763.528.1876.12-0.393C2867H4410N770O818S2436.16
BXYJ_LOCUS617BxFMO654461.538.7086.73-0.200C2788H4345N731O791S2436.96
BXYJ_LOCUS714BxFMO743249.776.2680.00-0.404C2249H3420N604O646S1639.19
BXYJ_LOCUS5342BxFMO851459.438.9879.47-0.357C2735H4145N723O747S1027.16
BXYJ_LOCUS9545BxFMO953261.468.0587.91-0.294C2801H4311N745O777S1931.05
BXYJ_LOCUS10598BxFMO1054060.249.0681.06-0.147C2741H4209N723O769S2031.64
BXYJ_LOCUS11576BxFMO1157266.099.0985.87-0.103C3036H4627N789O811S2937.52
BXYJ_LOCUS13418BxFMO1254161.587.9476.01-0.309C2793H4236N752O777S2538.69
BXYJ_LOCUS14657BxFMO1352460.249.2785.52-0.276C2736H4253N735O760S2039.45
Table 1 Analysis of the physicochemical properties of BxFMOs
Fig. 1 Phylogenetic tree of BxFMOs and FMOs of other nematodesCe: Caenorhabditis elegans; Cre: Caenorhabditis remanei.
Fig. 2 Gene structures of BxFMOs
Fig. 3 Conserved motif structures of BxFMOs
Fig. 4 Chromosomal localization of BxFMOs

蛋白编号

Protein ID

氨基酸数目

Number of amino acids

蛋白结构(数量/占比)

Protein structure (number/percentage)

定位

Location

苏氨酸

Threonine

丝氨酸

Serine

酪氨酸

Tyrosine

α-螺旋

α-helix

β-折叠

β-fold

β-转角

β-turn

无规卷曲

Random coil

BxFMO1201713189/34.81%102/18.78%30/5.52%222/40.88%细胞外、细胞质、细胞核、细胞膜
BxFMO2112610139/28.90%100/20.79%24/4.99%218/45.32%细胞质
BxFMO3182211188/34.06%106/19.20%28/5.07%230/41.67%细胞质
BxFMO420139190/34.11%104/18.67%23/4.13%240/43.09%细胞质
BxFMO5201311185/33.21%105/18.85%29/5.21%238/42.73%细胞质
BxFMO611327189/34.74%94/17.28%21/3.86%240/44.12%细胞外、细胞质、细胞核
BxFMO79173135/31.25%77/17.82%28/6.48%192/44.44%细胞外
BxFMO86246160/31.13%110/21.40%29/5.64%215/41.83%细胞外
BxFMO9171813181/34.02%101/18.98%30/5.64%220/41.35%细胞质
BxFMO1013259176/32.59%99/18.33%31/5.74%234/43.33%细胞质
BxFMO11142110201/35.14%114/19.93%23/4.02%234/40.91%细胞质、细胞膜
BxFMO12131814185/34.20%100/18.48%30/5.55%226/41.77%细胞质
BxFMO1318207159/30.34%110/20.99%24/4.58%231/44.08%细胞质
Table 2 Structural analysis of BxFMOs
Fig. 5 Predicted three-dimensional structures of BxFMOs
Fig. 6 Expression profiles of BxFMOs after Bursaphelenchus xylophilus inoculation to Pinus thunbergii seedlings or under the rotenone stress
[1]   李硕,孙红,周艳涛,等.2021年全国主要林业有害生物发生情况及2022年发生趋势预测[J].中国森林病虫,2022,41(2):44-47. DOI:10.19688/j.cnki.issn1671-0886.20220009
LI S, SUN H, ZHOU Y T, et al. National occurrence of major forestry pests in 2021 and forecast of occurrence trends in 2022[J]. Forest Pest and Disease, 2022, 41(2): 44-47. (in Chinese)
doi: 10.19688/j.cnki.issn1671-0886.20220009
[2]   桑海泉,任伟强,陈鹏.黄素单加氧酶3及其代谢产物水平的变化对高原地区胆囊胆固醇结石形成影响的实验研究[J].中国普通外科杂志,2021,30(2):158-164. DOI:10.7659/j.issn.1005-6947.2021.02.005
SANG H Q, REN W Q, CHEN P. Experimental study of changes in flavin monooxygenase 3 and its metabolite levels in formation of gallbladder cholesterol stone in plateau areas[J]. Chinese Journal of General Surgery, 2021, 30(2):158-164. (in Chinese with English abstract)
doi: 10.7659/j.issn.1005-6947.2021.02.005
[3]   汤雨洁,田祥瑞,胡波,等.甜菜夜蛾黄素单加氧酶的原核表达及其对杀虫剂的代谢作用[J].南京农业大学学报,2019,42(4):672-681. DOI:10.7685/jnau.201811016
TANG Y J, TIAN X R, HU B, et al. Prokaryotic expressions of Spodoptera exigua flavin-dependent monooxygenases and the role in insecticide metabolism[J]. Journal of Nanjing Agricultural University, 2019, 42(4): 672-681. (in Chinese with English abstract)
doi: 10.7685/jnau.201811016
[4]   BENEDETTI M S. FAD-dependent enzymes involved in the metabolic oxidation of xenobiotics[J]. Annales Pharmaceutiques Françaises, 2011, 69(1): 45-52. DOI: 10.1016/j.pharma.2010.10.004
doi: 10.1016/j.pharma.2010.10.004
[5]   TIAN X, ZHAO S, GUO Z, et al. Molecular characterization, expression pattern and metabolic activity of flavin-dependent monooxygenases in Spodoptera exigua [J]. Insect Molecular Biology, 2018, 27(5): 533-544. DOI: 10.1111/imb.12392
doi: 10.1111/imb.12392
[6]   魏琪.昆虫黄素单加氧酶在杀虫剂解毒与糖脂代谢中的作用[D].江苏,南京:南京农业大学,2019.
WEI Q. The roles of insect flavin-containing monooxygenases in insecticide detoxification and carbohydrate and lipid metabolism[D]. Nanjing, Jiangsu: Nanjing Agricultural University, 2019. (in Chinese with English abstract)
[7]   刘思琪,汪琨璧,付亚雄,等.水稻黄素单加氧酶新基因OsFMO1表达特性及其功能初探[J].分子植物育种,2019,17(4):1039-1046. DOI:10.13271/j.mpb.017.001039
LIU S Q, WANG K B, FU Y X, et al. The expression characteristics and function of the new gene OsFMO1 in rice (Oryza sativa L.) flavine monooxygenase[J]. Molecular Plant Breeding, 2019, 17(4): 1039-1046. (in Chinese with English abstract)
doi: 10.13271/j.mpb.017.001039
[8]   薛圆.果蝇黄素单加氧酶对杀虫剂的解毒代谢以及芥子碱等对糖脂代谢的影响[D].江苏,南京:南京农业大学,2019.
XUE Y. Effects of Drosophila melanogaster flavin monooxygenases on detoxification of insecticides and sinapine on glycolipid metabolism[D]. Nanjing, Jiangsu: Nanjing Agricultural University, 2019. (in Chinese with English abstract)
[9]   李洋,刁健,郝昕,等.PGP基因家族成员的结构和功能[J].东北林业大学学报,2021,49(3):126-131. DOI:10.13759/j.cnki.dlxb.2021.03.021
LI Y, DIAO J, HAO X, et al. Structure and function of PGP gene family members[J]. Journal of Northeast Forestry University, 2021, 49(3): 126-131. (in Chinese with English abstract)
doi: 10.13759/j.cnki.dlxb.2021.03.021
[10]   MARTIN F, DUBE F, LINDSJÖ O K, et al. Transcriptional responses in Parascaris univalent after in vitro exposure to ivermectin, pyrantel citrate and thiabendazole[J]. Parasites & Vectors, 2020, 13(1): 342. DOI: 10.1186/s13071-020-04212-0
doi: 10.1186/s13071-020-04212-0
[11]   HOWE K L, BOLT B J, SHAFIE M, et al. WormBase ParaSite: a comprehensive resource for helminth genomics[J]. Molecular and Biochemical Parasitology, 2017(215): 2-10. DOI: 10.1016/j.molbiopara.2016.11.005
doi: 10.1016/j.molbiopara.2016.11.005
[12]   LU S N, WANG J Y, CHITSAZ F, et al. CDD/SPARCLE: the conserved domain database in 2020[J]. Nucleic Acids Research, 2020, 48(D1): D265-D268. DOI: 10.1093/nar/gkz991
doi: 10.1093/nar/gkz991
[13]   CANTELLI G, BATEMAN A, BROOKSBANK C, et al. The European Bioinformatics Institute (EMBL-EBI) in 2021[J]. Nucleic Acids Research, 2022, 50(D1): D11-D19. DOI: 10.1093/nar/gkab1127
doi: 10.1093/nar/gkab1127
[14]   DUVAUD S, GABELLA C, LISACEK F, et al. Expasy, the Swiss bioinformatics resource portal, as designed by its users[J]. Nucleic Acids Research, 2021, 49(W1): W216-W227. DOI: 10.1093/nar/gkab225
doi: 10.1093/nar/gkab225
[15]   TAMURA K, STECHER G, KUMAR S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7): 3022-3027. DOI: 10.1093/molbev/msab120
doi: 10.1093/molbev/msab120
[16]   HU B, JIN J P, GUO A Y, et al. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297. DOI: 10.1093/bioinformatics/btu817
doi: 10.1093/bioinformatics/btu817
[17]   BAILEY T L, JOHNSON J, GRANT C E, et al. The MEME Suite[J]. Nucleic Acids Research, 2015, 43(W1): W39-W49. DOI: 10.1093/nar/gkv416
doi: 10.1093/nar/gkv416
[18]   CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202. DOI: 10.1016/j.molp.2020.06.009
doi: 10.1016/j.molp.2020.06.009
[19]   BLOM N, SICHERITZ-PONTÉN T, GUPTA R, et al. Prediction of post-translational glycosylation and phosphory-lation of proteins from the amino acid sequence[J]. Proteomics, 2004, 4(6): 1633-1649. DOI: 10.1002/pmic.200300771
doi: 10.1002/pmic.200300771
[20]   GEOURJON C, DELÉAGE G. SOPMA: significant improve-ments in protein secondary structure prediction by consensus prediction from multiple alignments[J]. Bioinformatics, 1995, 11(6): 681-684. DOI: 10.1093/bioinformatics/11.6.681
doi: 10.1093/bioinformatics/11.6.681
[21]   YU N Y, WAGNER J R, LAIRD M R, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes[J]. Bioinformatics, 2010, 26(13): 1608-1615. DOI: 10.1093/bioinformatics/btq249
doi: 10.1093/bioinformatics/btq249
[22]   BIASINI M, BIENERT S, WATERHOUSE A, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information[J]. Nucleic Acids Research, 2014, 42(W1): W252-W258. DOI: 10.1093/nar/gku340
doi: 10.1093/nar/gku340
[23]   王步勇.松材线虫药剂处理转录组分析及ⅡS路径基因的功能研究[D].黑龙江,哈尔滨:东北林业大学,2017.
WANG B Y. Transcriptome analysis of Bursaphelenchus xylophilus under insecticides stress and functional analysis of ⅡS pathway related genes[D]. Harbin, Heilongjiang: Northeast Forestry University, 2017. (in Chinese with English abstract)
[24]   曾端香,余曦玥,于敬文,等.松材线虫病的检测及综合防治技术[J].中国农学通报,2022,38(4):86-91. DOI:10.11924/j.issn.1000-6850.casb2021-0992
ZENG D X, YU X Y, YU J W, et al. Detection and integrated control technology of Bursaphelenchus xylophilus [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 86-91. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb2021-0992
[25]   GUJAR M R, STRICKER A M, LUNDQUIST E A. Flavin monooxygenases regulate Caenorhabditis elegans axon guidance and growth cone protrusion with UNC-6/netrin signaling and Rac GTPases[J]. PLoS Genetics, 2017, 13(8): e1006998. DOI: 10.1371/journal.pgen.1006998
doi: 10.1371/journal.pgen.1006998
[1] Youxuan WANG,Mengyu WANG,Yubo LI,Han TAO,Chuchu XIA,Kaimei HUANG,Qiaomei WANG. Bioinformatics and expression analysis of Aux/IAA family gene in Chinese kale[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 314-324.
[2] Faxiang WAN,Lianzhen WANG,Jun GAO. Bioinformatics of 1-aminocyclopropane-1-carboxylic acid synthase gene from eggplant and its expression analysis in response to adversity stresses[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 325-334.
[3] Zhuo LI,Lang CHEN,Tao JIANG,Lixia LIU,Li ZHANG,Rui WANG,Yaodong LI. Single nucleotide polymorphism and bioinformatics analysis of DQA2 gene in yak[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 376-382.
[4] Li ZHANG,Weilun NONG,Jianxiong LU,Guohua ZHANG,Lixia LIU. Single nucleotide polymorphism screening and bioinformatics analysis of the main family genes of FABPs in Bamei pig[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 109-118.
[5] ZHANG Li, LIU Lixia, DAI Hongwei, CHEN Hong, WANG Rui, YUE Binghui. Single nucleotide polymorphism screening and bioinformatics analysis of myostatin gene in Jingning chicken[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 629-637.
[6] MA Guangying, ZHU Kaiyuan, SHI Xiaohua, ZOU Qingcheng, LIU Huichun, ZHAN Jing, TIAN Danqing. Cloning, sequence and expression analysis of two SOC1 genes from Anthurium[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(3): 289-297.
[7] Shen Enhui, Liu Yang, Ye Chuyu, Fan Longjiang. Recent studies on non-coding small RNAs in plants[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(4): 370-378.
[8] KE Ye, ZENG Song-rong, ZHENG Qiu-hua. Bioinformatics analysis of structure and function of serine protease gene from Mucor racemosus[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(4): 370-376.
[9] MA Yun,WANG Yun-yun, ZHANG Xiao-ting, LI Fen, WANG Qi-zhao,WANG Xin-zhuang. Bioinformatics analysis of duck PPARα gene structure and function[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(4): 371-379.
[10] ZHOU Xiao-dong,SHEN Fu-bing,ZHENG Jue-cun. Study on β-momorcharin molecular modeling[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(4): 399-406.