Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (2): 179-190    DOI: 10.3785/j.issn.1008-9209.2022.03.282
Special Topic: Insect Physiology and Biochemistry & Pest Biological Control     
Sequencing and analysis of the complete mitochondrial genome of Endoclita minanus Yang(Lepidoptera: Hepialidae)
Yan LI1(),Zhihong LI1,Wei ZHANG1(),Shouke ZHANG2,Jinping SHU1
1.Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang, China
2.College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
Download: HTML   HTML (   PDF(2426KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In this study, we explored the taxonomic status of Endoclita minanus Yangin Hepialidae based on the mitochondrial genome level. The complete mitochondrial genome of Endoclita minanus was sequenced by using Illumina MiSeq sequencing platform, and its general features and base composition were analyzed. The phylogenetic tree of mitochondrial genomes of nine species in Hepialidae was constructed by using maximum likelihood method, and their phylogenetic relationships within Hepialidae were analyzed. The results showed that the mitochondrial genome of Endoclita minanus is a circular molecule of 15 248 bp, including 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and an A+T-rich region with a typical gene arrangement of the mitochondrial genome in Lepidoptera. The A+T content is 81.18%. The gene order of trnI-trnQ-trnM in the mitochondrial genome of Endoclita minanus is consistent with the other species of Hepialidae, which is different from the gene order of trnM-trnI-trnQ in all previously sequenced species of Lepidoptera. The phylogenetic relationships of nine species within Hepialidae based on mitochondrial genomes present as Ahamus+[Napialus+(Endoclita+Thitarodes)]. Gene rearrangement existed in the mitochondrial genome of Endoclita minanus. The phylogenetic analyses strongly supported that Endoclita minanus and Endoclitasignifer gathered into one clade. This study provides an informative reference for understanding the evolution laws of Hepialidae and lays a certain theoretical basis for exploring the phylogeny and evolution of Lepidoptera.



Key wordsEndoclita minanus Yang      mitochondrial genome      phylogenetic relationship      gene rearrangement     
Received: 28 March 2022      Published: 27 April 2023
CLC:  Q951.3  
Corresponding Authors: Wei ZHANG     E-mail: ljy0926141319@163.com;zwlzhi@126.com
Cite this article:

Yan LI,Zhihong LI,Wei ZHANG,Shouke ZHANG,Jinping SHU. Sequencing and analysis of the complete mitochondrial genome of Endoclita minanus Yang(Lepidoptera: Hepialidae). Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(2): 179-190.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.03.282     OR     https://www.zjujournals.com/agr/Y2023/V49/I2/179


闽鸠蝙蛾(鳞翅目:蝙蝠蛾科)线粒体基因组全序列测定和分析

本研究旨在从线粒体基因组水平探讨闽鸠蝙蛾(Endoclita minanus Yang)在蝙蝠蛾科(Hepialidae)内的分类地位。通过Illumina MiSeq平台测序技术测定闽鸠蝙蛾线粒体基因组全序列,分析其结构特点和碱基组成;使用最大似然法构建蝙蝠蛾科9种昆虫线粒体基因组的系统发育树,分析其在蝙蝠蛾科内的系统发育关系。结果显示:闽鸠蝙蛾线粒体基因组全长15 248 bp,包含13个蛋白质编码基因、22个转运RNA基因、2个核糖体RNA基因和一段典型的鳞翅目昆虫线粒体基因组基因排列的A+T富含区,且A+T含量为81.18%。闽鸠蝙蛾的线粒体基因组排列顺序为trnI-trnQ-trnM,与其他蝙蝠蛾科昆虫顺序相同,而与鳞翅目其他昆虫的线粒体基因组排列顺序(trnM-trnI-trnQ)不同。基于线粒体基因组分析,得到蝙蝠蛾科9种昆虫的系统发育关系为无钩蝠蛾属(Ahamus)+{棒蝠蛾属(Napialus)+[蝙蝠蛾属(Endoclita)+钩蝠蛾属(Thitarodes)]}。闽鸠蝙蛾线粒体基因组存在基因重排现象,系统发育分析支持闽鸠蝙蛾和桉蝙蛾聚为一支。本研究为掌握蝙蝠蛾科昆虫的进化规律提供了信息参考,为探究鳞翅目昆虫的系统发育和进化提供了一定的理论依据。


关键词: 闽鸠蝙蛾,  线粒体基因组,  系统发育关系,  基因重排 

类群

Group

总科

Superfamily

Genus

物种

Species

GenBank登录号

GenBank accession No.

国家

Country

文献

Reference

内群

Ingroup

蝙蝠蛾科

Hepialidae

钩蝠蛾属 Thitarodes色季拉钩蝠蛾 Thitarodes sejilaensisNC_032649、KU053201中国[19]
贡嘎蝠蛾 Thitarodes gonggaensisKP718817、NC_026903中国[24]
蒲氏钩蝠蛾 Thitarodes puiNC_023530、KF908880中国[18]
钩蝠蛾 Thitarodes sp.KX527574中国[25]
人支蝠蛾 Thitarodes renzhiensisHM744694、NC_018094中国[11]
棒蝠蛾属 Napialus湖南棒蝠蛾 Napialus hunanensisNC_024424、KJ632465中国[18]
无钩蝠蛾属 Ahamus云南无钩蝠蛾 Ahamus yunnanensisHM744695、NC_018095中国[11]
蝙蝠蛾属 Endoclita桉蝙蛾 Endoclita signiferNC_029873、KT780172中国[26]
闽鸠蝙蛾 Endoclita minanusMG564346中国本研究

外群

Outgroup

夜蛾科

Noctuidae

光腹夜蛾属 MythimnaMythimna pallidicostaMH027985中国[27]
铃夜蛾属 Helicoverpa烟青虫 Helicoverpa assultaNC_035890中国[28]
ProtegiraProtegira songiNC_034938、KY379907中国[29]
Table 1 Information of insect species used for mitochondrial genome analysis
Fig. 1 Structure of the mitochondrial genome of Endoclita minanus

基因

Gene

编码链

Coding strand

位置

Position/bp

长度

Length/bp

起始密码子

Initiation codon

终止密码子

Termination codon

反密码子

Anticodon

基因间隔核苷酸

Intergenic nucleotide

trnIN1~6565GAT1
trnQJ67~13569TTG8
trnMN144~21370CAT1
nad2N215~1 2341 020ATTTAA-2
trnWN1 233~1 30068TCA-8
trnCJ1 293~1 36068GCA3
trnYJ1 364~1 43067GTA3
cox1N1 434~2 9691 536CGATAA-5
trnL2N2 965~3 03369TAA
cox2N3 034~3 715682TTGT(AA)
trnKN3 716~3 78671CTT-1
trnDN3 786~3 85267GTC
atp8N3 853~4 014162ATATAA-7
atp6N4 008~4 685678ATGTAA-1
cox3N4 685~5 473789ATGTAA2
trnGN5 476~5 54267TCC-3
nad3N5 540~5 893354ATATAA2
trnAN5 896~5 96166TGC11
trnRN5 973~6 04068TCG2
trnNN6 043~6 11068GTT
trnS1N6 111~6 16959TCT8
trnEN6 178~6 24669TTC8
trnFJ6 255~6 32066GAA7
nad5J6 328~8 0641 737ATTTAA
trnHJ8 065~8 13167GTG8
nad4J8 140~9 4801 341ATGTAA-1
nad4lJ9 480~9 773294ATGTAA2
trnTN9 776~9 84267TGT
trnPJ9 843~9 90967TGG2
nad6N9 912~10 436525ATATAA-1
cobN10 436~11 5811 146ATGTAA4
trnS2N11 586~11 65065TGA24
nad1J11 675~12 613939ATATAA-6
trnL1J12 608~12 67669TAG-25
rrnLJ12 652~13 9871 33620
trnVJ14 008~14 07366TAC1
rrnSJ14 075~14 862788386
Table 2 Organization of the mitochondrial genome of Endoclita minanus

基因

Gene

A/%C/%G/%T/%(A+T)/%(G+C)/%

AT偏斜

AT-skew

GC偏斜

GC-skew

全基因组 Whole genome40.3610.957.8740.8281.1818.82-0.006-0.164
nad235.988.046.2749.7185.6914.31-0.160-0.123
cox132.4914.1314.4538.9371.4228.58-0.0900.011
cox237.3911.8810.5640.1877.5722.43-0.036-0.059
atp840.747.411.8550.0090.749.26-0.102-0.600
atp634.3712.097.9645.5879.9420.06-0.140-0.206
cox332.7013.0512.8041.4474.1425.86-0.118-0.010
nad335.598.766.7848.8784.4615.54-0.157-0.127
nad534.256.5111.4047.8482.1017.90-0.1650.273
nad432.896.7112.1648.2581.1318.87-0.1890.289
nad4l34.014.0810.2051.7085.7114.29-0.2060.429
nad639.247.815.7147.2486.4813.52-0.093-0.155
cob33.1612.7410.7343.3776.5323.47-0.133-0.086
nad129.937.6714.8047.6077.5322.47-0.2280.318
rrnL44.315.169.6640.8785.1814.820.0400.303
rrnS44.805.089.5240.6185.4114.590.0490.304
Table 3 Base compositions of the mitochondrial genome, PCGs, and rRNA genes of Endoclita minanus
Fig. 2 Percentages of amino acids in proteins coded by PCGs of the mitochondrial genome of Endoclita minanus

氨基酸

Amino acid

密码子

Codon

使用频率

n

相对同义密码子使用度

RSCU

氨基酸

Amino acid

密码子

Codon

使用频率

n

相对同义密码子使用度

RSCU

丙氨酸

Ala

GCG10.27

脯氨酸

Pro

CCG41.07
GCA328.57CCA195.09
GCT154.02CCT205.36
GCC51.34CCC195.09

半胱氨酸

Cys

TGT4812.85

谷氨酰胺

Gln

CAG20.54
TGC4311.52CAA246.43

天冬氨酸

Asp

GAT4512.05

精氨酸

Arg

CGG61.61
GAC41.07CGA174.55

谷氨酸

Glu

GAG61.61CGT30.80
GAA256.70CGC10.27

苯丙氨酸

Phe

TTT442118.37

丝氨酸

Ser

AGG7419.82
TTC8322.23AGA5815.53

甘氨酸

Gly

GGG164.28AGT6116.34
GGA3910.44AGC4010.71
GGT287.50TCG184.82
GGC61.61TCA9024.10

组氨酸

His

CAT266.96TCT4913.12
CAC61.61TCC4010.71

异亮氨酸

Ile

ATT379101.50

苏氨酸

Thr

ACG143.75
ATC5314.19ACA5314.19

赖氨酸

Lys

AAG318.30ACT318.30
AAA15441.24ACC318.30

亮氨酸

Leu

TTG5113.66

缬氨酸

Val

GTG41.07
TTA24465.35GTA287.50
CTG41.07GTT297.77
CTA174.55GTC20.54
CTT256.70

色氨酸

Trp

TGG4812.85
CTC82.14TGA8221.96

甲硫氨酸

Met

ATG379.91

酪氨酸

Tyr

TAT31183.29
ATA11129.73TAC4010.71

天冬酰胺

Asn

AAT31183.29

终止

End

TAG5213.93
AAC5915.80TAA11029.46
Table 4 Frequency of utilization and RSCU of amino acids encoded by PCGs of the mitochondrial genome in Endoclita minanus
Fig. 3 Comparison of the secondary structures of tRNA genes between Endoclita minanus and Endoclita signifer
Fig. 4 Phylogenetic tree of 13 PCGs sequences of nine species of Hepialidae based on maximum likelihood methodBootstrap support value (maximum likelihood≥50%) and Bayesian posterior probability value≥0.80 are shown at the nodes.
[1]   WOLSTENHOLME D R. Animal mitochondrial-DNA: structure and evolution[J]. International Review of Cytology, 1992, 141: 173-216.
[2]   CAMERON S L. Insect mitochondrial genomics: implications for evolution and phylogeny[J]. Annual Review of Entomology, 2014, 59: 95-117. DOI: 10.1146/annurev-ento-011613-162007
doi: 10.1146/annurev-ento-011613-162007
[3]   SONG S N, TANG P, WEI S J, et al. Comparative and phylogenetic analysis of the mitochondrial genomes in basal hymenopterans[J]. Scientific Reports, 2016, 6: 20972. DOI: 10.1038/srep20972
doi: 10.1038/srep20972
[4]   HEBERT P D N, PENTON E H, BURNS J M, et al. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator [J]. PNAS, 2004, 101(41): 14812-14817. DOI: 10.1073/pnas.0406166101
doi: 10.1073/pnas.0406166101
[5]   CAMERON S L, LAMBKIN C L, BARKER S C, et al. A mitochondrial genome phylogeny of Diptera: whole genome sequence data accurately resolve relationships over broad timescales with high precision[J]. Systematic Entomology, 2007, 32(1): 40-59. DOI: 10.1111/j.1365-3113.2006.00355.x
doi: 10.1111/j.1365-3113.2006.00355.x
[6]   LI Y P, SONG W, SHI S L, et al. Mitochondrial genome nucleotide substitution pattern between domesticated silkmoth, Bombyx mori, and its wild ancestors, Chinese Bombyx mandarina and Japanese Bombyx mandarina [J]. Genetics and Molecular Biology, 2010, 33(1): 186-189. DOI: 10.1590/S14 15-47572009005000108
doi: 10.1590/S14
[7]   KIM M J, KANG A R, JEONG H C, et al. Reconstructing intraordinal relationships in Lepidoptera using mitochondrial genome date with the description of two newly sequenced Lycaenids, Spindasis takanonis and Protantigius superans (Lepidoptera: Lycaenidae)[J]. Molecular Phylogenetics & Evolution, 2011, 61(2): 436-445. DOI: 10.1016/j.ympev.2011.07.013
doi: 10.1016/j.ympev.2011.07.013
[8]   KAWAHARA A Y, BREINHOLT J W. Phylogenomics provides strong evidence for relationships of butterflies and moths[J]. Proceedings of the Royal Society B: Biological Sciences, 2014, 281(1788): 20140970. DOI: 10.1098/rspb.2014.0970
doi: 10.1098/rspb.2014.0970
[9]   MUIRHEAD K A, MURPHY N P, SALLAM N, et al. Phylogenetics and genetic diversity of the Cotesia flavipes complex of parasitoid wasps (Hymenoptera: Braconidae), biological control agents of lepidopteran stemborers[J]. Mole-cular Phylogenetics & Evolution, 2012, 63(3): 904-914. DOI: 10.1016/j.ympev.2012.03.003
doi: 10.1016/j.ympev.2012.03.003
[10]   DIJKSTRA K-D B, BECHLY G, BYBEE S M, et al. The classification and diversity of dragonflies and damselflies (Odonata)[J]//ZHANG Z Q. Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Addenda 2013. Zootaxa, 2013, 3703(1): 36-45. DOI: 10.11646/zootaxa.3703.1.9
doi: 10.11646/zootaxa.3703.1.9
[11]   CAO Y Q, MA C, CHEN J Y, et al. The complete mitochon-drial genomes of two ghost moths, Thitarodes renzhiensis and Thitarodes yunnanensis: the ancestral gene arrangement in Lepidoptera[J]. BMC Genomics, 2012, 13: 276. DOI: 10.1186/1471-2164-13-276
doi: 10.1186/1471-2164-13-276
[12]   朱弘复,王林瑶.蛀干蝙蝠蛾(鳞翅目:蝙蝠蛾科)[J].昆虫学报,1985,28(3):293-301, 357.
CHU H F, WANG L Y. On the stem-borers of Chinese hepialids (Lepidoptera: Hepialidae)[J]. Acta Entomologica Sinica, 1985, 28(3): 293-301, 357. (in Chinese with English abstract)
[13]   朱弘复,王林瑶,韩红香.中国动物志:昆虫纲 第38卷 鳞翅目 蝙蝠蛾科 蛱蛾科[M].北京:科学出版社,2004.
CHU H F, WANG L Y, HAN H X. Fauna Sinica, Insecta, Vol. 38 , Lepidoptera, Hepialidae and Epiplemidae[M]. Beijing: Science Press, 2004. (in Chinese)
[14]   杨集昆,王象贤.福建省的蝙蝠蛾及三个新种(鳞翅目:蝠蛾科)[J].华东昆虫学报,1992,1(1):10-16.
YANG J K, WANG X X. The hepialid moths from Fujian Province with descriptions of three new species (Lepidoptera: Hepialidae)[J]. Entomological Journal of East China, 1992, 1(1): 10-16. (in Chinese with English abstract)
[15]   HEPPNER J B. Ghost moths(Lepidoptera: Hepialidae)[M]//CAPINERA J L. Encyclopedia of Entomology. Dordrecht, the Netherlands: Springer, 2008. DOI: 10.1007/978-1-4020-6359-6_1086
doi: 10.1007/978-1-4020-6359-6_1086
[16]   张古忍,古德祥,刘昕.中国蝠蛾属一新种(鳞翅目:蝙蝠蛾科)[J].动物分类学报,2007,32(2):473-476. DOI:10.3969/j.issn.1000-0739.2007.02.042
ZHANG G R, GU D X, LIU X. A new species of Hepialus (Lepidoptera, Hepialidae) from China[J]. Acta Zootaxonomica Sinica, 2007, 32(2): 473-476. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-0739.2007.02.042
[17]   涂永勤,马开森,张德利.蝠蛾属Hepialus一新种记述(鳞翅目:蝙蝠蛾科)[J].昆虫分类学报,2009,31(2):123-126. DOI:10.3969/j.issn.1000-7482.2009.02.007
TU Y Q, MA K S, ZHANG D L. A new species of the genus Hepialus (Lepidoptera: Hepialidae) from China[J]. Entomo-taxonomia, 2009, 31(2): 123-126. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-7482.2009.02.007
[18]   YI J Q, QUE S Q, XIN T R, et al. Complete mitochondrial genome of Thitarodes pui (Lepidoptera: Hepialidae)[J]. Mito-chondrial DNA Part A, 2014, 27(1): 109-110. DOI: 10.3109/19401736.2013.873926
doi: 10.3109/19401736.2013.873926
[19]   ZOU Z W, MIN Q, CHENG S Y, et al. The complete mitochondrial genome of Thitarodes sejilaensis (Lepidoptera: Hepialidae), a host insect of Ophiocordyceps sinensis and its implication in taxonomic revision of Hepialus adopted in China[J]. Gene, 2017, 601: 44-55. DOI: 10.1016/j.gene.2016.11.039
doi: 10.1016/j.gene.2016.11.039
[20]   BANKEVICH A, NURK S, ANTIPOV D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing[J]. Journal of Computational Biology, 2012, 19(5): 455-477. DOI: 10.1089/cmb.2012.0021
doi: 10.1089/cmb.2012.0021
[21]   COIL D, JOSPIN G, DARLING A E. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data[J]. Bioinformatics, 2015, 31(4): 587-589. DOI: 10.1093/bioinformatics/btu661
doi: 10.1093/bioinformatics/btu661
[22]   WALKER B J, ABEEL T, SHEA T, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement[J]. PLoS ONE, 2014, 9(11): e112963. DOI: 10.1371/journal.pone.0112963
doi: 10.1371/journal.pone.0112963
[23]   DRUMMOND A J, SUCHARD M A, XIE D, et al. Bayesian phylogenetics with BEAUti and the BEAST 1.7[J]. Molecular Biology and Evolution, 2012, 29(8): 1969-1973. DOI: 10.1093/molbev/mss075
doi: 10.1093/molbev/mss075
[24]   SHI P, LU Z H, HE Y C, et al. Complete mitochondrial genome of Hepialus gonggaensis (Lepidoptera: Hepialidae), the host insect of Ophiocordyceps sinensis [J]. Mitochondrial DNA Part A, 2015, 27(6): 4205-4206. DOI: 10.3109/19401736.2015.1022741
doi: 10.3109/19401736.2015.1022741
[25]   KANG X C, HU Y Q, HU J, et al. The mitochondrial genome of the lepidopteran host cadaver (Thitarodes sp.) of Ophiocordyceps sinensis and related phylogenetic analysis[J]. Gene, 2017, 598: 32-42. DOI: 10.1016/j.gene.2016.10.036
doi: 10.1016/j.gene.2016.10.036
[26]   YANG X S, YANG X H, XUE D Y, et al. The complete mitochondrial genome of Endoclita signifer (Lepidoptera, Hepialidae)[J]. Mitochondrial DNA Part A, 2016, 27(6): 4620-4621. DOI: 10.3109/19401736.2015.1101585
doi: 10.3109/19401736.2015.1101585
[27]   YAO S, WANG Z H, ZHU X Y, et al. The complete mitochondrial genome of the Sideridis albicosta (Lepi-doptera: Noctuoidea: Noctuidae)[J]. Mitochondrial DNA Part B, 2018, 3(2): 474-475. DOI: 10.1080/23802359.2018.1462114
doi: 10.1080/23802359.2018.1462114
[28]   LI Z Q, ZHANG S, LUO J Y, et al. Retracted article: the complete mitochondrial genome of the tobacco budworm, Helicoverpa assulta [J]. Mitochondrial DNA Part A, 2016, 27(6): 3882-3883. DOI: 10.3109/19401736.2014.987245
doi: 10.3109/19401736.2014.987245
[29]   GUO X H, CHENG M Y, HOU Y F, et al. The complete mitochondrial genome of the monophagous moth Protegira songi (Lepidoptera: Noctuidae)[J]. Conservation Genetics Resources, 2017, 9(2): 277-279. DOI: 10.1007/s12686-016-0672-2
doi: 10.1007/s12686-016-0672-2
[30]   杜会聪,王瑶,方加兴,等.马尾松毛虫线粒体全基因组的测定与分析[J].林业科学,2019,55(12):162-172. DOI:10.11707/j.1001-7488.20191217
DU H C, WANG Y, FANG J X, et al. Sequencing and analysis of complete mitochondrial genome of Dendrolimus punctatus (Lepidoptera: Lasiocampidae)[J]. Scientia Silvae Sinicae, 2019, 55(12): 162-172. (in Chinese with English abstract)
doi: 10.11707/j.1001-7488.20191217
[31]   王瑶,孔祥波,张苏芳,等.云南松毛虫线粒体基因组全序列测定和分析[J].林业科学研究,2019,32(5):11-20. DOI:10.13275/j.cnki.lykxyj.2019.05.002
WANG Y, KONG X B, ZHANG S F, et al. Sequencing and analysis of complete mitochondrial genome of Dendrolimus houi Lajonquiere (Lepidoptera: Lasiocampidae)[J]. Forest Research, 2019, 32(5): 11-20. (in Chinese with English abstract)
doi: 10.13275/j.cnki.lykxyj.2019.05.002
[32]   彭艳,陈斌,李廷景.黄侧异腹胡蜂线粒体基因组全序列测定和分析[J].昆虫学报,2017,60(4):464-474. DOI:10.16380/j.kcxb.2017.04.011
PENG Y, CHEN B, LI T J. Sequencing and analysis of the complete mitochondrial genome of Parapolybia crocea (Hymenoptera: Vespidae) [J]. Acta Entomologica Sinica, 2017, 60(4): 464-474. (in Chinese with English abstract)
doi: 10.16380/j.kcxb.2017.04.011
[33]   王维,孟智启,石放雄,等.鳞翅目昆虫比较线粒体基因组学研究进展[J].科学通报,2013,58(30):3017-3029. DOI:10.1360/972012-1721
WANG W, MENG Z Q, SHI F X, et al. Advances in comparative mitogenomic studies of Lepidoptera (Arthropoda: Insecta). Chinese Science Bulletin, 2013, 58(30): 3017-3029. (in Chinese with English abstract)
doi: 10.1360/972012-1721
[34]   SALVATO P, SIMONATO M, BATTISTI A, et al. The complete mitochondrial genome of the bag-shelter moth Ochrogaster lunifer (Lepidoptera, Notodontidae)[J]. BMC Genomics, 2008, 9: 331. DOI: 10.1186/1471-2164-9-331
doi: 10.1186/1471-2164-9-331
[35]   JIANG S T, HONG G Y, YU M, et al. Characterization of the complete mitochondrial genome of the giant silkworm moth, Eriogyna pyretorum (Lepidoptera: Saturniidae)[J]. International Journal of Biological Sciences, 2009, 5(4): 351-365. DOI: 10.7150/ijbs.5.351
doi: 10.7150/ijbs.5.351
[36]   WEI S J, NIU F F, TAN J L. The mitochondrial genome of the Vespa bicolor Fabricius (Hymenoptera: Vespidae: Vespinae)[J]. Mitochondrial DNA Part A, 2016, 27(2): 875-876. DOI: 10.3109/19401736.2014.919484
doi: 10.3109/19401736.2014.919484
[37]   BOORE J. L. Animal mitochondrial genomes[J]. Nucleic Acids Research, 1999, 27(8): 1767-1780.
[38]   MORAES N, MORGANTE J S, MIYAKI C Y. Genetic diversity in different populations of sloths assessed by DNA fingerprinting[J]. Brazilian Journal of Biology, 2002, 62(3): 503-508. DOI: 10.1590/s1519-69842002000300015
doi: 10.1590/s1519-69842002000300015
[39]   KILPERT F, PODSIADLOWSKI L. The complete mitochon-drial genome of the common sea slater, Ligia oceanica (Crustacea, Isopoda) bears a novel gene order and unusual control region features[J]. BMC Genomics, 2006, 7: 241. DOI: 10.1186/1471-2164-7-241
doi: 10.1186/1471-2164-7-241
[40]   田丽丽,孙晓燕,陈梅,等.残锷线蛱蝶线粒体基因组全序列及其系统学意义(英文)[J].动物学研究,2012,33(2):133-143. DOI:10.3724/SP.J.1141.2012.02133
TIAN L L, SUN X Y, CHEN M, et al. Complete mitochondrial genome of the Five-dot Sergeant Parathyma sulpitia (Nymphalidae: Limenitidinae) and its phylogenetic implications[J]. Zoological Research, 2012, 33(2): 133-143. (in English)
doi: 10.3724/SP.J.1141.2012.02133
[41]   WU X Y, XU X D, YU Z N, et al. Comparative mitogen-omic analyses of three scallops (Bivalvia: Pectinidae) reveal high level variation of genomic organization and a diversity of transfer RNA gene sets[J]. BMC Research Notes, 2009, 2: 69. DOI: 10.1186/1756-0500-2-69
doi: 10.1186/1756-0500-2-69
[42]   CHEN S J, SHI P, ZHANG D L, et al. Complete mitochon-drial genome of Hepialus xiaojinensis (Lepidoptera: Hepialidae)[J]. Mitochondrial DNA Part A, 2015, 28(3): 305-306. DOI: 10.3109/19401736.2015.1118089
doi: 10.3109/19401736.2015.1118089
[43]   CHEN P Y, ZHENG B Y, LIU J X, et al. Next-generation sequencing of two mitochondrial genomes from family Pompilidae (Hymenoptera: Vespoidea) reveal novel patterns of gene arrangement[J]. International Journal of Molecular Sciences, 2016, 17(10): 1641. DOI: 10.3390/ijms17101641
doi: 10.3390/ijms17101641
[1] WANG Yan, LIANG Chenggang, CHEN Qingqing, SHI Taoxiong, CHEN Qijiao, MENG Ziye, DENG Jiao, HUANG Juan, CHEN Qingfu. Analysis of abscisic acid-insensitive gene (ABI) sequence and phylogenetic relationship in genus Fagopyrum[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(5): 536-542.