资源利用与环境保护 |
|
|
|
|
石墨化炭黑去除水产养殖尾水中恩诺沙星残留的研究 |
李梦妍1(),齐梦钰2,3,吴佳龙1,李铁军2,胡红美2(),张小宁1() |
1.资源昆虫高效养殖与利用全国重点实验室/西南大学蚕桑纺织与生物质科学学院,重庆 400715 2.浙江省海洋水产研究所,浙江省海洋渔业资源可持续利用技术研究重点实验室,浙江 舟山 316021 3.浙江海洋大学水产学院,浙江 舟山 316022 |
|
Removal of enrofloxacin residues from aquaculture tailwater by graphitized carbon black |
Mengyan LI1(),Mengyu QI2,3,Jialong WU1,Tiejun LI2,Hongmei HU2(),Xiaoning ZHANG1() |
1.State Key Laboratory of Resource Insects/College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China 2.Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, Zhejiang, China 3.Institute of Marine and Fisheries, Zhejiang Ocean University, Zhoushan 316021, Zhejiang, China |
引用本文:
李梦妍,齐梦钰,吴佳龙,李铁军,胡红美,张小宁. 石墨化炭黑去除水产养殖尾水中恩诺沙星残留的研究[J]. 浙江大学学报(农业与生命科学版), 2024, 50(5): 785-795.
Mengyan LI,Mengyu QI,Jialong WU,Tiejun LI,Hongmei HU,Xiaoning ZHANG. Removal of enrofloxacin residues from aquaculture tailwater by graphitized carbon black. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(5): 785-795.
链接本文:
https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.07.191
或
https://www.zjujournals.com/agr/CN/Y2024/V50/I5/785
|
1 |
HUANG P, GE C J, FENG D, et al. Effects of metal ions and pH on ofloxacin sorption to cassava residue-derived biochar[J]. Science of the Total Environment, 2018, 616-617: 1384-1391. DOI: 10.1016/j.scitotenv.2017.10.177
doi: 10.1016/j.scitotenv.2017.10.177
|
2 |
ASHFAQ M, KHAN K N, RASOOL S, et al. Occurrence and ecological risk assessment of fluoroquinolone antibiotics in hospital waste of Lahore, Pakistan[J]. Environmental Toxicology and Pharmacology, 2016, 42: 16-22. DOI: 10.1016/j.etap.2015.12.015
doi: 10.1016/j.etap.2015.12.015
|
3 |
JIN C X, CHEN Q Y, SUN R L, et al. Eco-toxic effects of sulfadiazine sodium, sulfamonomethoxine sodium and enroflox-acin on wheat, Chinese cabbage and tomato[J]. Ecotoxicology, 2009, 18(7): 878-885. DOI: 10.1007/s10646-009-0349-7
doi: 10.1007/s10646-009-0349-7
|
4 |
DOSOGNE H, MEYER E, STURK A, et al. Effect of enroflox-acin treatment on plasma endotoxin during bovine Escherichia coli mastitis[J]. Inflammation Research, 2002, 51(4): 201-205. DOI: 10.1007/pl00000293
doi: 10.1007/pl00000293
|
5 |
HAN Q F, ZHAO S, ZHANG X R, et al. Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China[J]. Environment International, 2020, 138: 105551. DOI: 10.1016/j.envint.2020.105551
doi: 10.1016/j.envint.2020.105551
|
6 |
HARRABI M, ALEXANDRINO D A M, ALOULOU F, et al. Biodegradation of oxytetracycline and enrofloxacin by autoch-thonous microbial communities from estuarine sediments[J]. Science of the Total Environment, 2019, 648: 962-972. DOI: 10.1016/j.scitotenv.2018.08.193
doi: 10.1016/j.scitotenv.2018.08.193
|
7 |
BERGES J, MOLES S, ORMAD M P, et al. Antibiotics removal from aquatic environments: adsorption of enrofloxacin, trimethoprim, sulfadiazine, and amoxicillin on vegetal powdered activated carbon[J]. Environmental Science and Pollution Research, 2020, 28(7): 8442-8452. DOI: 10.1007/s11356-020-10972-0
doi: 10.1007/s11356-020-10972-0
|
8 |
ZHAO J, LIANG G W, ZHANG X L, et al. Coating magnetic biochar with humic acid for high efficient removal of fluoro-quinolone antibiotics in water[J]. Science of the Total Envi-ronment, 2019, 688: 1205-1215. DOI: 10.1016/j.scitotenv.2019.06.287
doi: 10.1016/j.scitotenv.2019.06.287
|
9 |
LI J Q, HE F F, SHEN X Y, et al. Pyrolyzed fabrication of N/P co-doped biochars from (NH4)3PO4-pretreated coffee shells and appraisement for remedying aqueous Cr(Ⅵ) contaminants[J]. Bioresource Technology, 2020, 315: 123840. DOI: 10.1016/j.biortech.2020.123840
doi: 10.1016/j.biortech.2020.123840
|
10 |
SUN Y Q, YU I K M, TSANG D C W, et al. Tailored design of graphitic biochar for high-efficiency and chemical-free microwave-assisted removal of refractory organic contaminants[J]. Chemical Engineering Journal, 2020, 398: 125505. DOI: 10.1016/j.cej.2020.125505
doi: 10.1016/j.cej.2020.125505
|
11 |
ZHANG Y N, JIANG S Q, QIU L W, et al. Performance and mechanism of tea waste biochar in enhancing the removal of tetracycline by peroxodisulfate[J]. Environmental Science and Pollution Research, 2022, 29(18): 27595-27605. DOI: 10.1007/s11356-021-18285-6
doi: 10.1007/s11356-021-18285-6
|
12 |
GENG X X, LÜ S Y, YANG J, et al. Carboxyl-functionalized biochar derived from walnut shells with enhanced aqueous adsorption of sulfonamide antibiotics[J]. Journal of Environ-mental Management, 2021, 280: 111749. DOI: 10.1016/j.jenvman.2020.111749
doi: 10.1016/j.jenvman.2020.111749
|
13 |
LIU H J, LI J, XU X H, et al. Highly graphitic carbon black-supported platinum nanoparticle catalyst and its enhanced electrocatalytic activity for the oxygen reduction reaction in acidic medium[J]. Electrochimica Acta, 2013, 93: 25-31. DOI: 10.1016/j.electacta.2013.01.090
doi: 10.1016/j.electacta.2013.01.090
|
14 |
PIOVESANA S, CAPRIOTTI A L, CAVALIERE C, et al. New magnetic graphitized carbon black TiO2 composite for phos-phopeptide selective enrichment in shotgun phosphoproteomics[J]. Analytical Chemistry, 2016, 88(24): 12043-12050. DOI: 10.1021/acs.analchem.6b02345
doi: 10.1021/acs.analchem.6b02345
|
15 |
OSTYN N R, STEELE J A, DE PRINS M, et al. Low-temperature activation of carbon black by selective photo-catalytic oxidation[J]. Nanoscale Advances, 2019, 1(8): 2873-2880. DOI: 10.1039/c9na00188c
doi: 10.1039/c9na00188c
|
16 |
郝一男,王喜明.文冠果活性炭的制备与应用研究[M].长春:吉林大学出版社,2020. HAO Y N, WANG X M. Preparation and Application of Activated Carbon from Xanthoceras sorbifolia Bunge[M]. Changchun: Jilin University Press, 2020. (in Chinese)
|
17 |
宋应华,许惠.花生壳生物吸附剂的制备及其在含染料废水治理中的应用[M].重庆:重庆大学出版社,2017. SONG Y H, XU H. Preparation of Peanut Shell Biosorbent and Its Application in Dye-containing Wastewater Treatment [M]. Chongqing: Chongqing University Press, 2017. (in Chinese)
|
18 |
CHOUDHARY M, KUMAR R, NEOGI S. Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water[J]. Journal of Hazardous Materials, 2020, 392: 122441. DOI: 10.1016/j.jhazmat.2020.122441
doi: 10.1016/j.jhazmat.2020.122441
|
19 |
ZHU Y J, HE P F, HU H M, et al. Determination of quinolone antibiotics in environmental water using automatic solid-phase extraction and isotope dilution ultra-performance liquid chroma-tography tandem mass spectrometry[J]. Journal of Chromatog-raphy B, 2022, 1208: 123390. DOI: 10.1016/j.jchromb.2022.123390
doi: 10.1016/j.jchromb.2022.123390
|
20 |
TANG Z M, JIANG F, ZHANG Y H, et al. Mussel-inspired injectable hydrogel and its counterpart for actuating pro-liferation and neuronal differentiation of retinal progenitor cells[J]. Biomaterials, 2019, 194: 57-72. DOI: 10.1016/j.biomaterials.2018.12.015
doi: 10.1016/j.biomaterials.2018.12.015
|
21 |
GOYNE K W, CHOROVER J, KUBICKI J D, et al. Sorption of the antibiotic ofloxacin to mesoporous and nonporous alumina and silica[J]. Journal of Colloid and Interface Science, 2005, 283(1): 160-170. DOI: 10.1016/j.jcis.2004.08.150
doi: 10.1016/j.jcis.2004.08.150
|
22 |
ESTÉVEZ-PEDRAZA Á G, MARTÍNEZ-MÉNDEZ R, PORTILLO-RODRÍGUEZ O, et al. Portable electronic device to assess the human balance using a minimum number of sensors[J]. Biomedical Physics & Engineering Express, 2020, 6(1): 015027. DOI: 10.1088/2057-1976/ab6858
doi: 10.1088/2057-1976/ab6858
|
23 |
NOWARA A, BURHENNE J, SPITELLER M. Binding of fluoroquinolone carboxylic acid derivatives to clay minerals[J]. Journal of Agricultural and Food Chemistry, 1997, 45(4): 1459-1463.
|
24 |
LI Y H, DU Q J, LIU T H, et al. Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes[J]. Chemical Engineering Research and Design, 2013, 91(2): 361-368. DOI: 10.1016/j.cherd.2012.07.007
doi: 10.1016/j.cherd.2012.07.007
|
25 |
NGUYEN V T, LE H D, NGUYEN V C, et al. Synthesis of multi-layer graphene films on copper tape by atmospheric pressure chemical vapor deposition method[J]. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 4(3): 035012. DOI: 10.1088/2043-6262/4/3/035012
doi: 10.1088/2043-6262/4/3/035012
|
26 |
XIE X Y, HE X J, ZHANG H F, et al. Interconnected sheet-like porous carbons from coal tar by a confined soft-template strategy for supercapacitors[J]. Chemical Engineering Journal, 2018, 350: 49-56. DOI: 10.1016/j.cej.2018.05.011
doi: 10.1016/j.cej.2018.05.011
|
27 |
CHOWDHURY S, SIKDER J, MANDAL T, et al. Compre-hensive analysis on sorptive uptake of enrofloxacin by activated carbon derived from industrial paper sludge[J]. Science of the Total Environment, 2019, 665: 438-452. DOI: 10.1016/j.scitotenv.2019.02.081
doi: 10.1016/j.scitotenv.2019.02.081
|
28 |
ZHAO Y J, LIU X T, LI W H, et al. One-step synthesis of garlic peel derived biochar by concentrated sulfuric acid: enhanced adsorption capacities for enrofloxacin and interfacial interaction mechanisms[J]. Chemosphere, 2022, 290: 133263. DOI: 10.1016/j.chemosphere.2021.133263
doi: 10.1016/j.chemosphere.2021.133263
|
29 |
ZHAO J, LIANG G W, ZHANG X L, et al. Coating magnetic biochar with humic acid for high efficient removal of fluoro-quinolone antibiotics in water[J]. Science of the Total Envi-ronment, 2019, 688: 1205-1215. DOI: 10.1016/j.scitotenv.2019.06.287
doi: 10.1016/j.scitotenv.2019.06.287
|
30 |
ZOU M Y, TIAN W J, CHU M L, et al. Biochar composite derived from cellulase hydrolysis apple branch for quinolone antibiotics enhanced removal: precursor pyrolysis performance, functional group introduction and adsorption mechanisms[J]. Environmental Pollution, 2022, 313: 120104. DOI: 10.1016/j.envpol.2022.120104
doi: 10.1016/j.envpol.2022.120104
|
31 |
BERGES J, MOLES S, ORMAD M P, et al. Antibiotics removal from aquatic environments: adsorption of enrofloxacin, trimethoprim, sulfadiazine, and amoxicillin on vegetal pow-dered activated carbon[J]. Environmental Science and Pollution Research, 2021, 28(7): 8442-8452. DOI: 10.1007/s11356-020-10972-0
doi: 10.1007/s11356-020-10972-0
|
32 |
LI R N, WANG Z W, ZHAO X T, et al. Magnetic biochar-based manganese oxide composite for enhanced fluoroquin-olone antibiotic removal from water[J]. Environmental Science and Pollution Research, 2018, 25(31): 31136-31148. DOI: 10.1007/s11356-018-3064-1
doi: 10.1007/s11356-018-3064-1
|
33 |
WU L L, REN L P, LI J, et al. Novel maricultural-solid-waste derived biochar for removing eutrophic nutrients and enrofloxacin: property, mechanism, and application assessment[J]. Journal of Hazardous Materials, 2022, 427: 128147. DOI: 10.1016/j.jhazmat.2021.128147
doi: 10.1016/j.jhazmat.2021.128147
|
34 |
WANG J L, GUO X. Adsorption isotherm models: classifi-cation, physical meaning, application and solving method[J]. Chemosphere, 2020, 258: 127279. DOI: 10.1016/j.chemosphere.2020.127279
doi: 10.1016/j.chemosphere.2020.127279
|
35 |
TSENG R L, WU F C. Inferring the favorable adsorption level and the concurrent multi-stage process with the Freundlich constant[J]. Journal of Hazardous Materials, 2008, 155(1/2): 277-287. DOI: 10.1016/j.jhazmat.2007.11.061
doi: 10.1016/j.jhazmat.2007.11.061
|
36 |
CUI F J, LI H D, CHEN C, et al. Cattail fibers as source of cellulose to prepare a novel type of composite aerogel adsorbent for the removal of enrofloxacin in wastewater[J]. International Journal of Biological Macromolecules, 2021, 191: 171-181. DOI: 10.1016/j.ijbiomac.2021.09.022
doi: 10.1016/j.ijbiomac.2021.09.022
|
37 |
WANG F, SUN W L, PAN W Y, et al. Adsorption of sulfa-methoxazole and 17β-estradiol by carbon nanotubes/CoFe2O4 composites[J]. Chemical Engineering Journal, 2015, 274: 17-29. DOI: 10.1016/j.cej.2015.03.113
doi: 10.1016/j.cej.2015.03.113
|
38 |
YU F, LI Y, HUANG G Q, et al. Adsorption behavior of the antibiotic levofloxacin on microplastics in the presence of different heavy metals in an aqueous solution[J]. Chemosphere, 2020, 260: 127650. DOI: 10.1016/j.chemosphere.2020.127650
doi: 10.1016/j.chemosphere.2020.127650
|
39 |
CHEN H, GAO B, LI H. Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide[J]. Journal of Hazardous Materials, 2015, 282: 201-207. DOI: 10.1016/j.jhazmat.2014.03.063
doi: 10.1016/j.jhazmat.2014.03.063
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|