Please wait a minute...
浙江大学学报(农业与生命科学版)  2024, Vol. 50 Issue (5): 785-795    DOI: 10.3785/j.issn.1008-9209.2023.07.191
资源利用与环境保护     
石墨化炭黑去除水产养殖尾水中恩诺沙星残留的研究
李梦妍1(),齐梦钰2,3,吴佳龙1,李铁军2,胡红美2(),张小宁1()
1.资源昆虫高效养殖与利用全国重点实验室/西南大学蚕桑纺织与生物质科学学院,重庆 400715
2.浙江省海洋水产研究所,浙江省海洋渔业资源可持续利用技术研究重点实验室,浙江 舟山 316021
3.浙江海洋大学水产学院,浙江 舟山 316022
Removal of enrofloxacin residues from aquaculture tailwater by graphitized carbon black
Mengyan LI1(),Mengyu QI2,3,Jialong WU1,Tiejun LI2,Hongmei HU2(),Xiaoning ZHANG1()
1.State Key Laboratory of Resource Insects/College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
2.Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, Zhejiang, China
3.Institute of Marine and Fisheries, Zhejiang Ocean University, Zhoushan 316021, Zhejiang, China
 全文: PDF(3959 KB)   HTML
摘要:

本研究探究并评价了石墨化炭黑(graphitized carbon black, GCB)吸附去除水产养殖环境中恩诺沙星(enrofloxacin, ENR)的能力。通过扫描电子显微镜、傅里叶变换红外光谱仪、拉曼光谱以及Zeta电位对石墨化炭黑进行表征,探讨了pH值、吸附温度(T)、恩诺沙星初始质量浓度(C0)、吸附时间(t)对石墨化炭黑吸附恩诺沙星的影响。同时,从吸附热力学和吸附动力学等方面探究了石墨化炭黑对恩诺沙星的吸附机制。结果表明,石墨化炭黑对恩诺沙星具有良好的吸附能力,吸附过程符合伪二级动力学模型和弗罗因德利希(Freundlich)吸附等温模型。在pH=7、C0=200 mg/L、T=35 ℃的条件下,石墨化炭黑对溶液中恩诺沙星的吸附能力最强,最大吸附量可达74.43 mg/g。此外,石墨化炭黑对实际加标养殖淡水和加标养殖海水中恩诺沙星残留具有较好的吸附去除能力,单位吸附量分别为(32.47±0.99)、(31.84±1.46) mg/g。综上所述,石墨化炭黑具有去除实际水产养殖尾水中恩诺沙星的应用潜力。

关键词: 石墨化炭黑恩诺沙星吸附去除水产养殖环境    
Abstract:

This study explored and evaluated the adsorption capacity of graphitized carbon black (GCB) to remove enrofloxacin (ENR) in an aquaculture environment. GCB was characterized by scanning electron microscope, Fourier transform infrared spectrometer, Raman spectrum and Zeta potential. Additionally, the effects of pH value, adsorption temperature (T), initial concentration of ENR (C0) and adsorption time (t) on the adsorption of ENR by GCB were determined. Meanwhile, the adsorption thermodynamics and adsorption kinetics of ENR by GCB were explored to reveal its adsorption mechanisms. The results showed that GCB had good adsorption performance to ENR, which can be described by the pseudo-second-order kinetic model and the Freundlich adsorption isotherm model. Under the conditions of pH=7, C0=200 mg/L and T=35 ℃, GCB had the strongest adsorption capacity for ENR in solution, and the maximum adsorption quantity could reach 74.43 mg/g. Furthermore, it was found that GCB demonstrated good adsorption quantity on ENR residues in actual spiked cultural freshwater and spiked cultural seawater, and the unit adsorption quantities were (32.47±0.99) mg/g and (31.84±1.46) mg/g, respectively. In conclusion, GCB has the potential to remove ENR from real aquaculture tailwater.

Key words: graphitized carbon black    enrofloxacin    adsorption    removal    aquaculture environment
收稿日期: 2023-07-19 出版日期: 2024-10-31
CLC:  X52  
基金资助: 重庆市自然科学基金项目(CSTB2024NSCQ-MSX0515);重庆市商务委员会2024年茧丝绸发展项目(20240523172126600);国家自然科学基金项目(31800430);浙江省舟山市科技项目(2024C31044)
通讯作者: 胡红美,张小宁     E-mail: lm20011219@email.swu.edu.cn;huhm@zju.edu.cn;xzhang@swu.edu.cn
作者简介: 李梦妍(https://orcid.org/0009-0000-7608-8211),E-mail:lm20011219@email.swu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李梦妍
齐梦钰
吴佳龙
李铁军
胡红美
张小宁

引用本文:

李梦妍,齐梦钰,吴佳龙,李铁军,胡红美,张小宁. 石墨化炭黑去除水产养殖尾水中恩诺沙星残留的研究[J]. 浙江大学学报(农业与生命科学版), 2024, 50(5): 785-795.

Mengyan LI,Mengyu QI,Jialong WU,Tiejun LI,Hongmei HU,Xiaoning ZHANG. Removal of enrofloxacin residues from aquaculture tailwater by graphitized carbon black. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(5): 785-795.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.07.191        https://www.zjujournals.com/agr/CN/Y2024/V50/I5/785

化合物

Compound

保留时间

Retention time/min

母离子

Precursor ion (m/z)

子离子

Product ion (m/z)

锥孔电压

Cone voltage/V

碰撞能量

Collision energy/eV

ENR7.93360.4245.2、316.2*3218、20
ENR-D57.87365.4321.2*3220
表1  恩诺沙星质谱参数
图1  石墨化炭黑的扫描电子显微镜图及其粒径频率分布图
图2  石墨化炭黑吸附恩诺沙星前后的FTIR(A)和石墨化炭黑的拉曼光谱(B)
图3  溶液pH值对石墨化炭黑对恩诺沙星吸附能力的影响以及不同pH值下石墨化炭黑的Zeta电位
图4  不同的吸附温度和恩诺沙星初始质量浓度对石墨化炭黑吸附恩诺沙星的影响

对ENR的最大吸附量

The maximum qt of ENR/(mg/g)

文献

Reference

150.17[28]
8.4[29]
48.31[30]
61.12[31]
7.19[32]
6.02[33]
74.43本研究
表2  本研究与已报道的碳基吸附剂对恩诺沙星的吸附能力的比较
T/℃

Langmuir吸附等温线

Langmuir adsorption isotherm

Freundlich吸附等温线

Freundlich adsorption isotherm

吉布斯自由能

?G/(kJ/mol)

qm/(mg/g)KL/(L/mg)R2KF/((L1/n ?mg(1-1/n))/g)1/nR2
3575.240.205 30.697 638.710.130 40.976 8-0.050 9
2565.591.455 20.736 837.870.127 70.986 2-0.051 5
1567.100.341 10.619 632.570.147 40.976 5-0.061 5
表3  石墨化炭黑在不同吸附温度下吸附恩诺沙星的Langmuir、Freundlich吸附等温线参数
图5  不同吸附温度下拟合得到的Langmuir、Freundlich吸附等温线图中实线表示拟合的Langmuir吸附等温线,虚线表示拟合的Freundlich吸附等温线。
图6  不同恩诺沙星初始质量浓度下石墨化炭黑吸附恩诺沙星的伪一级(A)、伪二级(B)动力学模型和颗粒内扩散模型(C)拟合曲线图C中,实线表示颗粒内扩散模型连续性的分段吸附过程,虚线表示颗粒内扩散模型拟合曲线。
C0/(mg/L)

伪一级动力学模型

Pseudo-first-order kinetic model

伪二级动力学模型

Pseudo-second-order kinetic model

颗粒内扩散模型

Intra-particle diffusion model

k1/min-1qe/(mg/g)R2k2/(g/(mg?min))qe/(mg/g)R2ki /(mg/(g?min1/2))C/(mg/g)R2
300.187 043.890.920 90.003 545.750.999 90.384 8350.293 4
400.223 048.020.923 50.007 449.361.000 00.272 1420.459 9
500.248 053.280.920 40.005 254.980.999 90.294 8480.545 5
表4  不同恩诺沙星初始质量浓度下石墨化炭黑吸附恩诺沙星的伪一级、伪二级动力学模型和颗粒内扩散模型参数
图7  NaCl质量浓度对石墨化炭黑对恩诺沙星吸附能力的影响
图8  GCB对HEK-293细胞的毒性作用短栅上图为培养第1、2、3天时各组细胞形态。“ns”表示差异无统计学意义。
图9  3种实际加标水样中石墨化炭黑对恩诺沙星的去除效果**表示在P<0.01水平差异有统计学意义(双样本t检验),“ns”表示差异无统计学意义。
1 HUANG P, GE C J, FENG D, et al. Effects of metal ions and pH on ofloxacin sorption to cassava residue-derived biochar[J]. Science of the Total Environment, 2018, 616-617: 1384-1391. DOI: 10.1016/j.scitotenv.2017.10.177
doi: 10.1016/j.scitotenv.2017.10.177
2 ASHFAQ M, KHAN K N, RASOOL S, et al. Occurrence and ecological risk assessment of fluoroquinolone antibiotics in hospital waste of Lahore, Pakistan[J]. Environmental Toxicology and Pharmacology, 2016, 42: 16-22. DOI: 10.1016/j.etap.2015.12.015
doi: 10.1016/j.etap.2015.12.015
3 JIN C X, CHEN Q Y, SUN R L, et al. Eco-toxic effects of sulfadiazine sodium, sulfamonomethoxine sodium and enroflox-acin on wheat, Chinese cabbage and tomato[J]. Ecotoxicology, 2009, 18(7): 878-885. DOI: 10.1007/s10646-009-0349-7
doi: 10.1007/s10646-009-0349-7
4 DOSOGNE H, MEYER E, STURK A, et al. Effect of enroflox-acin treatment on plasma endotoxin during bovine Escherichia coli mastitis[J]. Inflammation Research, 2002, 51(4): 201-205. DOI: 10.1007/pl00000293
doi: 10.1007/pl00000293
5 HAN Q F, ZHAO S, ZHANG X R, et al. Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China[J]. Environment International, 2020, 138: 105551. DOI: 10.1016/j.envint.2020.105551
doi: 10.1016/j.envint.2020.105551
6 HARRABI M, ALEXANDRINO D A M, ALOULOU F, et al. Biodegradation of oxytetracycline and enrofloxacin by autoch-thonous microbial communities from estuarine sediments[J]. Science of the Total Environment, 2019, 648: 962-972. DOI: 10.1016/j.scitotenv.2018.08.193
doi: 10.1016/j.scitotenv.2018.08.193
7 BERGES J, MOLES S, ORMAD M P, et al. Antibiotics removal from aquatic environments: adsorption of enrofloxacin, trimethoprim, sulfadiazine, and amoxicillin on vegetal powdered activated carbon[J]. Environmental Science and Pollution Research, 2020, 28(7): 8442-8452. DOI: 10.1007/s11356-020-10972-0
doi: 10.1007/s11356-020-10972-0
8 ZHAO J, LIANG G W, ZHANG X L, et al. Coating magnetic biochar with humic acid for high efficient removal of fluoro-quinolone antibiotics in water[J]. Science of the Total Envi-ronment, 2019, 688: 1205-1215. DOI: 10.1016/j.scitotenv.2019.06.287
doi: 10.1016/j.scitotenv.2019.06.287
9 LI J Q, HE F F, SHEN X Y, et al. Pyrolyzed fabrication of N/P co-doped biochars from (NH4)3PO4-pretreated coffee shells and appraisement for remedying aqueous Cr(Ⅵ) contaminants[J]. Bioresource Technology, 2020, 315: 123840. DOI: 10.1016/j.biortech.2020.123840
doi: 10.1016/j.biortech.2020.123840
10 SUN Y Q, YU I K M, TSANG D C W, et al. Tailored design of graphitic biochar for high-efficiency and chemical-free microwave-assisted removal of refractory organic contaminants[J]. Chemical Engineering Journal, 2020, 398: 125505. DOI: 10.1016/j.cej.2020.125505
doi: 10.1016/j.cej.2020.125505
11 ZHANG Y N, JIANG S Q, QIU L W, et al. Performance and mechanism of tea waste biochar in enhancing the removal of tetracycline by peroxodisulfate[J]. Environmental Science and Pollution Research, 2022, 29(18): 27595-27605. DOI: 10.1007/s11356-021-18285-6
doi: 10.1007/s11356-021-18285-6
12 GENG X X, LÜ S Y, YANG J, et al. Carboxyl-functionalized biochar derived from walnut shells with enhanced aqueous adsorption of sulfonamide antibiotics[J]. Journal of Environ-mental Management, 2021, 280: 111749. DOI: 10.1016/j.jenvman.2020.111749
doi: 10.1016/j.jenvman.2020.111749
13 LIU H J, LI J, XU X H, et al. Highly graphitic carbon black-supported platinum nanoparticle catalyst and its enhanced electrocatalytic activity for the oxygen reduction reaction in acidic medium[J]. Electrochimica Acta, 2013, 93: 25-31. DOI: 10.1016/j.electacta.2013.01.090
doi: 10.1016/j.electacta.2013.01.090
14 PIOVESANA S, CAPRIOTTI A L, CAVALIERE C, et al. New magnetic graphitized carbon black TiO2 composite for phos-phopeptide selective enrichment in shotgun phosphoproteomics[J]. Analytical Chemistry, 2016, 88(24): 12043-12050. DOI: 10.1021/acs.analchem.6b02345
doi: 10.1021/acs.analchem.6b02345
15 OSTYN N R, STEELE J A, DE PRINS M, et al. Low-temperature activation of carbon black by selective photo-catalytic oxidation[J]. Nanoscale Advances, 2019, 1(8): 2873-2880. DOI: 10.1039/c9na00188c
doi: 10.1039/c9na00188c
16 郝一男,王喜明.文冠果活性炭的制备与应用研究[M].长春:吉林大学出版社,2020.
HAO Y N, WANG X M. Preparation and Application of Activated Carbon from Xanthoceras sorbifolia Bunge[M]. Changchun: Jilin University Press, 2020. (in Chinese)
17 宋应华,许惠.花生壳生物吸附剂的制备及其在含染料废水治理中的应用[M].重庆:重庆大学出版社,2017.
SONG Y H, XU H. Preparation of Peanut Shell Biosorbent and Its Application in Dye-containing Wastewater Treatment [M]. Chongqing: Chongqing University Press, 2017. (in Chinese)
18 CHOUDHARY M, KUMAR R, NEOGI S. Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water[J]. Journal of Hazardous Materials, 2020, 392: 122441. DOI: 10.1016/j.jhazmat.2020.122441
doi: 10.1016/j.jhazmat.2020.122441
19 ZHU Y J, HE P F, HU H M, et al. Determination of quinolone antibiotics in environmental water using automatic solid-phase extraction and isotope dilution ultra-performance liquid chroma-tography tandem mass spectrometry[J]. Journal of Chromatog-raphy B, 2022, 1208: 123390. DOI: 10.1016/j.jchromb.2022.123390
doi: 10.1016/j.jchromb.2022.123390
20 TANG Z M, JIANG F, ZHANG Y H, et al. Mussel-inspired injectable hydrogel and its counterpart for actuating pro-liferation and neuronal differentiation of retinal progenitor cells[J]. Biomaterials, 2019, 194: 57-72. DOI: 10.1016/j.biomaterials.2018.12.015
doi: 10.1016/j.biomaterials.2018.12.015
21 GOYNE K W, CHOROVER J, KUBICKI J D, et al. Sorption of the antibiotic ofloxacin to mesoporous and nonporous alumina and silica[J]. Journal of Colloid and Interface Science, 2005, 283(1): 160-170. DOI: 10.1016/j.jcis.2004.08.150
doi: 10.1016/j.jcis.2004.08.150
22 ESTÉVEZ-PEDRAZA Á G, MARTÍNEZ-MÉNDEZ R, PORTILLO-RODRÍGUEZ O, et al. Portable electronic device to assess the human balance using a minimum number of sensors[J]. Biomedical Physics & Engineering Express, 2020, 6(1): 015027. DOI: 10.1088/2057-1976/ab6858
doi: 10.1088/2057-1976/ab6858
23 NOWARA A, BURHENNE J, SPITELLER M. Binding of fluoroquinolone carboxylic acid derivatives to clay minerals[J]. Journal of Agricultural and Food Chemistry, 1997, 45(4): 1459-1463.
24 LI Y H, DU Q J, LIU T H, et al. Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes[J]. Chemical Engineering Research and Design, 2013, 91(2): 361-368. DOI: 10.1016/j.cherd.2012.07.007
doi: 10.1016/j.cherd.2012.07.007
25 NGUYEN V T, LE H D, NGUYEN V C, et al. Synthesis of multi-layer graphene films on copper tape by atmospheric pressure chemical vapor deposition method[J]. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 4(3): 035012. DOI: 10.1088/2043-6262/4/3/035012
doi: 10.1088/2043-6262/4/3/035012
26 XIE X Y, HE X J, ZHANG H F, et al. Interconnected sheet-like porous carbons from coal tar by a confined soft-template strategy for supercapacitors[J]. Chemical Engineering Journal, 2018, 350: 49-56. DOI: 10.1016/j.cej.2018.05.011
doi: 10.1016/j.cej.2018.05.011
27 CHOWDHURY S, SIKDER J, MANDAL T, et al. Compre-hensive analysis on sorptive uptake of enrofloxacin by activated carbon derived from industrial paper sludge[J]. Science of the Total Environment, 2019, 665: 438-452. DOI: 10.1016/j.scitotenv.2019.02.081
doi: 10.1016/j.scitotenv.2019.02.081
28 ZHAO Y J, LIU X T, LI W H, et al. One-step synthesis of garlic peel derived biochar by concentrated sulfuric acid: enhanced adsorption capacities for enrofloxacin and interfacial interaction mechanisms[J]. Chemosphere, 2022, 290: 133263. DOI: 10.1016/j.chemosphere.2021.133263
doi: 10.1016/j.chemosphere.2021.133263
29 ZHAO J, LIANG G W, ZHANG X L, et al. Coating magnetic biochar with humic acid for high efficient removal of fluoro-quinolone antibiotics in water[J]. Science of the Total Envi-ronment, 2019, 688: 1205-1215. DOI: 10.1016/j.scitotenv.2019.06.287
doi: 10.1016/j.scitotenv.2019.06.287
30 ZOU M Y, TIAN W J, CHU M L, et al. Biochar composite derived from cellulase hydrolysis apple branch for quinolone antibiotics enhanced removal: precursor pyrolysis performance, functional group introduction and adsorption mechanisms[J]. Environmental Pollution, 2022, 313: 120104. DOI: 10.1016/j.envpol.2022.120104
doi: 10.1016/j.envpol.2022.120104
31 BERGES J, MOLES S, ORMAD M P, et al. Antibiotics removal from aquatic environments: adsorption of enrofloxacin, trimethoprim, sulfadiazine, and amoxicillin on vegetal pow-dered activated carbon[J]. Environmental Science and Pollution Research, 2021, 28(7): 8442-8452. DOI: 10.1007/s11356-020-10972-0
doi: 10.1007/s11356-020-10972-0
32 LI R N, WANG Z W, ZHAO X T, et al. Magnetic biochar-based manganese oxide composite for enhanced fluoroquin-olone antibiotic removal from water[J]. Environmental Science and Pollution Research, 2018, 25(31): 31136-31148. DOI: 10.1007/s11356-018-3064-1
doi: 10.1007/s11356-018-3064-1
33 WU L L, REN L P, LI J, et al. Novel maricultural-solid-waste derived biochar for removing eutrophic nutrients and enrofloxacin: property, mechanism, and application assessment[J]. Journal of Hazardous Materials, 2022, 427: 128147. DOI: 10.1016/j.jhazmat.2021.128147
doi: 10.1016/j.jhazmat.2021.128147
34 WANG J L, GUO X. Adsorption isotherm models: classifi-cation, physical meaning, application and solving method[J]. Chemosphere, 2020, 258: 127279. DOI: 10.1016/j.chemosphere.2020.127279
doi: 10.1016/j.chemosphere.2020.127279
35 TSENG R L, WU F C. Inferring the favorable adsorption level and the concurrent multi-stage process with the Freundlich constant[J]. Journal of Hazardous Materials, 2008, 155(1/2): 277-287. DOI: 10.1016/j.jhazmat.2007.11.061
doi: 10.1016/j.jhazmat.2007.11.061
36 CUI F J, LI H D, CHEN C, et al. Cattail fibers as source of cellulose to prepare a novel type of composite aerogel adsorbent for the removal of enrofloxacin in wastewater[J]. International Journal of Biological Macromolecules, 2021, 191: 171-181. DOI: 10.1016/j.ijbiomac.2021.09.022
doi: 10.1016/j.ijbiomac.2021.09.022
37 WANG F, SUN W L, PAN W Y, et al. Adsorption of sulfa-methoxazole and 17β-estradiol by carbon nanotubes/CoFe2O4 composites[J]. Chemical Engineering Journal, 2015, 274: 17-29. DOI: 10.1016/j.cej.2015.03.113
doi: 10.1016/j.cej.2015.03.113
38 YU F, LI Y, HUANG G Q, et al. Adsorption behavior of the antibiotic levofloxacin on microplastics in the presence of different heavy metals in an aqueous solution[J]. Chemosphere, 2020, 260: 127650. DOI: 10.1016/j.chemosphere.2020.127650
doi: 10.1016/j.chemosphere.2020.127650
39 CHEN H, GAO B, LI H. Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide[J]. Journal of Hazardous Materials, 2015, 282: 201-207. DOI: 10.1016/j.jhazmat.2014.03.063
doi: 10.1016/j.jhazmat.2014.03.063
[1] 陈婧,何宏燕,刘昌胜. 微流芯片表面生物改性用于重组人骨形态发生蛋白-2的检测[J]. 浙江大学学报(农业与生命科学版), 2020, 46(4): 391-399.
[2] 陈娇娇,鲁成银,王国庆,陈利燕,梁慧玲,张颖彬. 3种方法吸附绿茶、黄茶与白茶香气成分的比较[J]. 浙江大学学报(农业与生命科学版), 2020, 46(4): 449-458.
[3] 王立亮,高春辉,吴一超,黄巧云,蔡鹏. 大肠杆菌表面感应机制研究进展[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 685-690.
[4] 薛南冬,刘寒冰,杨兵,苏献伟,王冬琦. 毒死蜱土壤环境行为研究进展[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 713-726.
[5] 覃盼,王经纬,王斌,雷喜梅,李龙,黄耀伟. 中国东部5省猪呼肠孤病毒流行病学调查与分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 631-638.
[6] 孟凡德,袁国栋,韦婧,毕冬雪,王海龙,刘兴元. 风化煤提取的胡敏酸对镉的吸附性能及其应用潜力[J]. 浙江大学学报(农业与生命科学版), 2016, 42(04): 460-468.
[7] 兰天,楚颖超,张玲玲,赵文,潘运舟,张家玮,朱治强,吴蔚东. 椰衣和椰壳生物质炭的制备及其对溶液中Pb2+的吸附[J]. 浙江大学学报(农业与生命科学版), 2016, 42(04): 469-477.
[8] 张栋,刘兴元,赵红挺. 生物质炭对土壤无机污染物迁移行为影响研究进展[J]. 浙江大学学报(农业与生命科学版), 2016, 42(04): 451-459.
[9] 杨少慧,杨京平,汪华,赵杏. 南方丘陵茶园集水区稻田排水沟渠底泥磷的吸附特性[J]. 浙江大学学报(农业与生命科学版), 2015, 41(4): 458-464.
[10] 谢晓梅,廖敏,华嘉媛,陈娜,张楠,徐培智,解开治,徐昌旭,刘光荣. 钢渣对亚铁离子和硫离子的吸附-解吸特性[J]. 浙江大学学报(农业与生命科学版), 2015, 41(4): 465-475.
[11] 杜敬霆,孙朋飞,赵宇华,张昕. 壳聚糖生物炭微球对甲基红的吸附及微球菌剂的吸附增益效应[J]. 浙江大学学报(农业与生命科学版), 2015, 41(2): 228-236.
[12] 舒羚, 安毅, 王晓晗, 秦卫普, 杨琳, 刘向东. 选择吸附性活性炭颗粒的制备及性能[J]. 浙江大学学报(农业与生命科学版), 2015, 41(1): 111-118.
[13] 胡书琴, 汤一*, 刘莉. 茶渣对儿茶素的吸附动力学[J]. 浙江大学学报(农业与生命科学版), 2014, 40(6): 679-687.
[14] 陆宗超, 李振兴*, 张立敏, 林洪. 大菱鲆过敏原氧化后理化性质及与IgE结合能力的变化[J]. 浙江大学学报(农业与生命科学版), 2013, 39(6): 679-686.
[15] 肖海龙*, 赵凯, 林赛君, 王红青, 潘建红. 牛奶β-酪蛋白和大豆β-伴球蛋白双抗制备及夹心ELISA快速定性检测技术的建立[J]. 浙江大学学报(农业与生命科学版), 2013, 39(2): 222-226.