Please wait a minute...
浙江大学学报(农业与生命科学版)  2024, Vol. 50 Issue (1): 137-146    DOI: 10.3785/j.issn.1008-9209.2023.02.061
动物科学与动物医学     
鸡载脂蛋白A-Ⅰ的多克隆抗体制备及亚细胞定位分析
王圣文(),张丹,邬雨倩,周继勇,郑肖娟()
浙江大学动物医学中心,农业农村部动物病毒学重点实验室,浙江 杭州 310058
Preparation of polyclonal antibodies and subcellular localization analysis of chicken apolipoprotein A-Ⅰ
Shengwen WANG(),Dan ZHANG,Yuqian WU,Jiyong ZHOU,Xiaojuan ZHENG()
Key Laboratory of Animal Virology, Ministry of Agriculture and Rural Affairs, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
 全文: PDF(4557 KB)   HTML
摘要:

载脂蛋白A-Ⅰ(apolipoprotein A-Ⅰ, Apo A-Ⅰ)在动脉粥样硬化、病毒感染、脂质代谢等方面发挥重要的调控作用。目前关于鸡载脂蛋白A-Ⅰ(chicken Apo A-Ⅰ, chApo A-Ⅰ)的研究较少,对其生物学功能尚不清楚。本研究在对chApo A-Ⅰ进行生物信息学分析的基础上,通过pET-28a原核表达系统对chApo A-Ⅰ的重组蛋白进行表达和纯化。利用纯化后的重组蛋白免疫小鼠,制备鼠多克隆抗血清(多抗血清),通过酶联免疫吸附测定(enzyme-linked immunosorbent assay, ELISA)检测其效价,并通过蛋白质印迹法(Western blot, WB)、间接免疫荧光试验(indirect immunofluorescence assay, IFA)鉴定其反应性,随后利用多抗血清对chApo A-Ⅰ进行亚细胞定位分析。生物信息学分析显示,chApo A-Ⅰ蛋白在第1—18位氨基酸处含有信号肽,由N端的连续α螺旋构成。氨基酸序列同源性分析显示,chApo A-Ⅰ蛋白与火鸡的同源性最高,与鱼类的同源性最低。利用成功表达和纯化的重组蛋白His-chApo A-Ⅰ制备多抗血清,其ELISA效价达1×105以上,与真核表达的chApo A-Ⅰ蛋白有WB和IFA反应性,能识别鸡血清中的Apo A-Ⅰ蛋白,而与鼠、兔、牛、猪血清中的Apo A-Ⅰ蛋白无交叉反应性。利用该多克隆抗体对全长片段chApo A-Ⅰ-FL和不含信号肽的片段chApo A-Ⅰ-NS进行亚细胞定位分析,经共聚焦显微镜观察发现,chApo A-Ⅰ-FL蛋白大多分布在细胞膜附近,而chApo A-Ⅰ-NS蛋白则定位于细胞胞浆中,且多数呈弥散分布。chApo A-Ⅰ蛋白的特异性多克隆抗体和亚细胞定位结果为进一步开展Apo A-Ⅰ的生物学功能研究奠定了基础。

关键词: 鸡载脂蛋白A-Ⅰ原核表达多克隆抗体亚细胞定位    
Abstract:

Apolipoprotein A-Ⅰ (Apo A-Ⅰ) plays important roles in the regulation of atherosclerosis, viral infections, lipid metabolism and other aspects. However, there are few studies on chicken Apo A-Ⅰ (chApo A-Ⅰ), and its biological function is not well understood. Based on the bioinformatics analysis of chApo A-Ⅰ, this study further performed the expression and purification of the recombinant protein of chApo A-Ⅰ via the pET-28a prokaryotic expression system. Mouse polyclonal antiserum was prepared by immunizing mice with purified recombinant protein. Enzyme-linked immunosorbent assay (ELISA) was used to determine the titer of the polyclonal antiserum, and Western blot (WB) and indirect immunofluorescence assay (IFA) were used to determine its reactivity. Then, the polyclonal antiserum was further applied for subcellular localization analysis of chApo A-Ⅰ. Bioinformatic analysis revealed that the chApo A-Ⅰ protein contains signal peptide at 1-18 amino acids, which is composed of continuous alpha helix at the N-terminal. Homology analysis of amino acid sequences revealed that the chApo A-Ⅰ protein had the highest homology with turkey and the lowest homology with fish. The polyclonal antibody prepared using successfully expressed and purified recombinant protein His-chApo A-Ⅰ had an ELISA titer above 1×105 and specifically reacted with the eukaryotic expressed chApo A-Ⅰ protein in WB and IFA. Particularly, the antibody can recognize the Apo A-Ⅰ protein in chicken serum, but cannot cross-react with Apo A-Ⅰ proteins in the serums of mice, rabbits, cattle or pigs. This polyclonal antibody was further applied for subcellular localization analysis of full-length chApo A-Ⅰ (chApo A-Ⅰ-FL) and chApo A-Ⅰ without signal peptide (chApo A-Ⅰ-NS). Observed by confocal microscope, it was found that chApo A-Ⅰ-FL protein was mainly localized near the cell membrane, but chApo A-Ⅰ-NS protein was localized in the cytoplasm, and most of them were diffusely distributed. The specific polyclonal antibody and the results of subcellular localization of chApo A-Ⅰ provide a basis for further research on the biological function of Apo A-Ⅰ.

Key words: chicken apolipoprotein A-Ⅰ    prokaryotic expression    polyclonal antibody    subcellular localization
收稿日期: 2023-02-06 出版日期: 2024-03-01
CLC:  S855.3  
基金资助: 国家自然科学基金项目(31672555)
通讯作者: 郑肖娟     E-mail: wangshengwen@zju.edu.cn;zhengxiaojuan@zju.edu.cn
作者简介: 王圣文(https://orcid.org/0000-0001-9324-6795),E-mail:wangshengwen@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王圣文
张丹
邬雨倩
周继勇
郑肖娟

引用本文:

王圣文,张丹,邬雨倩,周继勇,郑肖娟. 鸡载脂蛋白A-Ⅰ的多克隆抗体制备及亚细胞定位分析[J]. 浙江大学学报(农业与生命科学版), 2024, 50(1): 137-146.

Shengwen WANG,Dan ZHANG,Yuqian WU,Jiyong ZHOU,Xiaojuan ZHENG. Preparation of polyclonal antibodies and subcellular localization analysis of chicken apolipoprotein A-Ⅰ. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(1): 137-146.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.02.061        https://www.zjujournals.com/agr/CN/Y2024/V50/I1/137

载体名称 Vector name引物名称 Primer name引物序列(5→3) Primer sequence (5→3)
pET-28apET-chApo A-Ⅰ-NS-BamHⅠ-FGCGGATCCCGCTCCTTCTGGCAGCACGAT
pET-chApo A-Ⅰ-NS-SalⅠ-RGCGTCGACTCAGGCCACGGACTTCTGGAGTT
pCI-neopCI-chApo A-Ⅰ-FL-XhoⅠ-FGCCTCGAGATGAGAGGCGTGCTGGTGA
pCI-chApo A-Ⅰ-NS-XhoⅠ-FGCCTCGAGATGCGCTCCTTCTGGCAGCA
pCI-chApo A-Ⅰ-XbaⅠ-RGCTCTAGATCAGGCCACGGACTTCTGGAGTT
表1  用于chApo A-Ⅰ蛋白表达载体构建的PCR引物
图1  chApo A-Ⅰ的生物信息学分析A. chApo A-Ⅰ蛋白的信号肽预测;B. chApo A-Ⅰ蛋白的跨膜区预测;C. chApo A-Ⅰ蛋白的二级结构预测;D. chApo A-Ⅰ蛋白的三级结构预测;E.不同物种间Apo A-Ⅰ蛋白氨基酸序列的系统发育分析。
图2  用于原核和真核表达载体构建的chApo A-Ⅰ基因扩增及重组质粒双酶切鉴定A. PCR扩增结果;B.双酶切鉴定结果;C.表达载体构建示意图。M:DNA分子量标志物。泳道1~3依次代表chApo A-Ⅰ-FL(pCI-neo载体)、chApo A-Ⅰ-NS(pCI-neo载体)、chApo A-Ⅰ-NS(pET-28a载体)基因的PCR扩增产物,泳道4~6依次代表pCI-chApo A-Ⅰ-FL、pCI-chApo A-Ⅰ-NS、pET-28a-chApo A-Ⅰ。
图3  His-chApo A-Ⅰ重组蛋白的表达和纯化鉴定A~B.重组蛋白诱导表达后的SDS-PAGE(A)、WB(B)鉴定;C~D.纯化后重组蛋白的SDS-PAGE(C)、WB(D)鉴定。M:蛋白质分子质量标志物。泳道1代表未经IPTG诱导的质粒,泳道2代表经IPTG诱导16 h的质粒,泳道3代表重组蛋白过柱前样品,泳道4~7依次代表经10、20、40、60 mmol/L咪唑溶液洗脱后的重组蛋白样品。
图4  利用His-chApo A-Ⅰ重组蛋白免疫小鼠制备的多抗血清的ELISA效价
图5  chApo A-Ⅰ多克隆抗体的WB和IFA反应性鉴定及与不同物种血清中Apo A-Ⅰ蛋白的交叉反应性鉴定A.多克隆抗体的WB反应性;B.多克隆抗体与不同物种血清中Apo A-Ⅰ蛋白的交叉反应性;C.多克隆抗体的IFA反应性。M:蛋白质分子质量标志物。泳道1代表未转染的DF-1细胞,泳道2~3依次代表转染pCI-neo、pCI-chApo A-Ⅰ-FL的DF-1细胞,泳道4代表His-chApo A-Ⅰ重组蛋白,泳道5~9依次代表鼠、兔、牛、猪、鸡血清。
图6  chApo A-Ⅰ蛋白在DF-1细胞中的亚细胞定位
1 YASEEN R I, EL-LEBOUDY M H, EL-DEEB H M. The relation between ApoB/ApoA-1 ratio and the severity of coronary artery disease in patients with acute coronary syndrome[J]. The Egyptian Heart Journal, 2021, 73: 24. DOI: 10.1186/s43044-021-00150-z
doi: 10.1186/s43044-021-00150-z
2 REN L W, YI J, LI W, et al. Apolipoproteins and cancer[J]. Cancer Medicine, 2019, 8(16): 7032-7043. DOI: 10.1002/cam4.2587
doi: 10.1002/cam4.2587
3 COCHRAN B J, ONG K L, MANANDHAR B, et al. APOA1: a protein with multiple therapeutic functions[J]. Current Atherosclerosis Reports, 2021, 23(3): 11. DOI: 10.1007/s11883-021-00906-7
doi: 10.1007/s11883-021-00906-7
4 王斯雯.三个江西不同品种鸡apoA-Ⅰ、apoB基因表达与脂类代谢的相关性分析[D].南昌:江西农业大学,2015.
WANG S W. Analysis correlation between the expression of apoA-Ⅰ and apoB gene and lipids metabolism in three different breeds of Jiangxi[D]. Nanchang: Jiangxi Agricultural University, 2015. (in Chinese with English abstract)
5 VAN DER VORST E P C. High-density lipoproteins and apolipoprotein A1[M]//HOEGER U, HARRIS J R. Vertebrate and Invertebrate Respiratory Proteins, Lipoproteins and other Body Fluid Proteins. Cham: Springer, 2020: 399-420. DOI: 10.1007/978-3-030-41769-7_16
doi: 10.1007/978-3-030-41769-7_16
6 卢燕辉,徐成润,卢秋燕,等.乙型肝炎病毒与载脂蛋白B关系及其意义的实验研究[J].中国临床研究,2019,32(1):39-42. DOI:10.13429/j.cnki.cjcr.2019.01.009
LU Y H, XU C R, LU Q Y, et al. Experimental study of relationship between hepatitis B virus and apolipoprotein B and its significance[J]. Chinese Journal of Clinical Research, 2019, 32(1): 39-42. (in Chinese with English abstract)
doi: 10.13429/j.cnki.cjcr.2019.01.009
7 ÅKERLÖF E, JÖRNVALL H, SLOTTE H, et al. Identi-fication of apolipoprotein A1 and immunoglobulin as components of a serum complex that mediates activation of human sperm motility[J]. Biochemistry, 1991, 30(37): 8986-8990.
8 ROSENSON R S, BREWER H B, Jr, DAVIDSON W S, et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport[J]. Circulation, 2012, 125(15): 1905-1919. DOI: 10.1161/CIRCULATIONAHA.111.066589
doi: 10.1161/CIRCULATIONAHA.111.066589
9 XU X T, SONG Z K, MAO B, et al. Apolipoprotein A1-related proteins and reverse cholesterol transport in antiathe-rosclerosis therapy: recent progress and future perspectives[J]. Cardiovascular Therapeutics, 2022: 4610834. DOI: 10.1155/2022/4610834
doi: 10.1155/2022/4610834
10 PAN B, KONG J G, JIN J R, et al. A novel anti-inflammatory mechanism of high density lipoprotein through up-regulating annexin A1 in vascular endothelial cells[J]. Biochimica et Biophysica Acta—Molecular Basis of Disease, 2016, 1861(6): 501-512. DOI: 10.1016/j.bbalip.2016.03.022
doi: 10.1016/j.bbalip.2016.03.022
11 MILASAN A, JEAN G, DALLAIRE F, et al. Apolipoprotein A-Ⅰ modulates atherosclerosis through lymphatic vessel-dependent mechanisms in mice[J]. Journal of the American Heart Association, 2017, 6(9): e006892. DOI: 10.1161/JAHA.117.006892
doi: 10.1161/JAHA.117.006892
12 张鸿,余佳珍,崔学丽.ApoB/ApoA1比值对糖尿病肾病患者进行肾脏替代治疗的预测价值[J].国际检验医学杂志,2022,43(18):2244-2248. DOI:10.3969/j.issn.1673-4130.2022.18.014
ZHANG H, YU J Z, CUI X L. Predictive value of ApoB/ApoA1 ratio for conducting renal replacement therapy in patients with diabetic kidney disease[J]. International Journal of Laboratory Medicine, 2022, 43(18): 2244-2248. (in Chinese with English abstract)
doi: 10.3969/j.issn.1673-4130.2022.18.014
13 谢利莹,罗雪珍,陈晓军.载脂蛋白A-Ⅰ的抗肿瘤作用及机制研究进展[J].中国肿瘤临床,2017,44(20):1045-1048. DOI:10.3969/j.issn.1000-8179.2017.20.750
XIE L Y, LUO X Z, CHEN X J. Advances in antitumor functions and mechanisms of apolipoprotein A-Ⅰ[J]. Chinese Journal of Clinical Oncology, 2017, 44(20): 1045-1048. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-8179.2017.20.750
14 SUN Y, REN D Y, YANG C, et al. TRIM15 promotes the invasion and metastasis of pancreatic cancer cells by mediating APOA1 ubiquitination and degradation[J]. Biochimica et Biophysica Acta—Molecular Basis of Disease, 2021, 1867(11): 166213. DOI: 10.1016/j.bbadis.2021.166213
doi: 10.1016/j.bbadis.2021.166213
15 MAGRAY J A, PANDITH A A, QASIM I, et al. Significant implications of APOA1 gene sequence variations and its protein expression in bladder cancer[J]. Biomedicines, 2021, 9(8): 938. DOI: 10.3390/biomedicines9080938
doi: 10.3390/biomedicines9080938
16 SHI S T, POLYAK S J, TU H, et al. Hepatitis C virus NS5A colocalizes with the core protein on lipid droplets and interacts with apolipoproteins[J]. Virology, 2002, 292(2): 198-210. DOI: 10.1006/viro.2001.1225
doi: 10.1006/viro.2001.1225
17 JAN C F, CHEN C J, CHIU Y H, et al. A population-based study investigating the association between metabolic syndrome and Hepatitis B/C infection (Keelung Community-based Integrated Screening Study No. 10)[J]. International Journal of Obesity, 2006, 30(5): 794-799. DOI: 10.1038/sj.ijo.0803204
doi: 10.1038/sj.ijo.0803204
18 CARPINTERO R, ALONSO C, PIÑEIRO M, et al. Pig major acute-phase protein and apolipoprotein A-Ⅰ responses correlate with the clinical course of experimentally induced African Swine Fever and Aujeszky’s disease[J]. Veterinary Research, 2007, 38(5): 741-753. DOI: 10.1051/vetres:2007030
doi: 10.1051/vetres:2007030
19 VAN LENTEN B J, WAGNER A C, NAYAK D P, et al. High-density lipoprotein loses its anti-inflammatory properties during acute influenza a infection[J]. Circulation, 2001, 103(18): 2283-2288. DOI: 10.1161/01.cir.103.18.2283
doi: 10.1161/01.cir.103.18.2283
20 YU X S, XU X Q, WU T P, et al. APOA1 level is negatively correlated with the severity of COVID-19[J]. International Journal of General Medicine, 2022, 15: 689-698. DOI: 10.2147/IJGM.S332956
doi: 10.2147/IJGM.S332956
21 MARTIN I, DUBOIS M C, SAERMARK T, et al. Apolipo-protein A-1 interacts with the N-terminal fusogenic domains of SIV (simian immunodeficiency virus) GP32 and HIV (human immunodeficiency virus) GP41: implications in viral entry[J]. Biochemical and Biophysical Research Communications, 1992, 186(1): 95-101.
22 COELHO D R, CARNEIRO P H, MENDES-MONTEIRO L, et al. ApoA1 neutralizes proinflammatory effects of dengue virus NS1 protein and modulates viral immune evasion[J]. Journal of Virology, 2021, 95(13): e01974-20. DOI: 10.1128/JVI.01974-20
doi: 10.1128/JVI.01974-20
23 HU F L, ZHAO C C, BI D R, et al. Mycoplasma gallisepticum (HS strain) surface lipoprotein pMGA interacts with host apolipoprotein A-Ⅰ during infection in chicken[J]. Applied Microbiology and Biotechnology, 2016, 100(3): 1343-1354. DOI: 10.1007/s00253-015-7117-9
doi: 10.1007/s00253-015-7117-9
[1] 冯梦珂,王星博,林璐璐,崔明仙,颜焰,周继勇. 不同原核表达载体对非洲猪瘟病毒CD2v蛋白可溶性表达及免疫反应性比较[J]. 浙江大学学报(农业与生命科学版), 2023, 49(6): 873-880.
[2] 戴远兴,郭留明,何婧,沈峥嵘,耿艳飞,吕明芳,袁正杰,李静,张恒木. 中国小麦花叶病毒富含半胱氨酸蛋白多克隆抗体的制备与应用[J]. 浙江大学学报(农业与生命科学版), 2023, 49(5): 677-686.
[3] 王子仪,金子安,卢辰赫,乔治,王圣文,颜焰,周继勇,郑肖娟. 猫冠状病毒非结构蛋白3的多克隆抗体制备及亚细胞定位[J]. 浙江大学学报(农业与生命科学版), 2023, 49(5): 744-754.
[4] 张丹,卢舒婷,卢辰赫,王子仪,徐丽华,陈伊玄,王圣文,金子安,倪成章,周继勇,郑肖娟. 猫冠状病毒核衣壳蛋白的可溶性表达与多克隆抗体反应性鉴定[J]. 浙江大学学报(农业与生命科学版), 2023, 49(3): 424-434.
[5] 张彤,汪一萍,葛洋,NTIRI Eric,周文武. 结球甘蓝α-法呢烯合成酶基因的鉴定与功能分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 182-192.
[6] 宣铃娟,程少禹,戴梦怡,王卓为,申亚梅. 紫玉兰MlSOC1基因亚细胞定位及花芽分化时期的表达分析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(4): 407-416.
[7] 章乔艳, 邵冯金, 俞向前, 谭勋. 禽CD133 胞外结构域原核表达及多克隆抗体的制备[J]. 浙江大学学报(农业与生命科学版), 2018, 44(6): 743-747.
[8] 阳毅敏, 潘灵韬, 庄浩瀚, 孙洪超, 杨怡, 陈学秋, 杜爱芳. 微小隐孢子虫黏蛋白CGD5_2060 原核表达及其黏附功能[J]. 浙江大学学报(农业与生命科学版), 2018, 44(2): 230-236.
[9] 关小燕, 陈丽妃, 何艳军, 王洁, 卢钢*. 番茄SlMAPK7基因的亚细胞定位与组织表达特性[J]. 浙江大学学报(农业与生命科学版), 2014, 40(6): 598-604.
[10] 王亚1,2, 刘建平1, 徐梦云1, 季为捷1, 凃巨民1, 张晓波1*. 水稻泛素缀合酶样蛋白基因OsCROC-1A的克隆与表达分析[J]. 浙江大学学报(农业与生命科学版), 2013, 39(4): 360-368.
[11] 赵丽, 夏文强, 蔡新忠*. 拟南芥AGO2的亚细胞定位分析[J]. 浙江大学学报(农业与生命科学版), 2013, 39(1): 1-.
[12] 张花美,李因来,潘熙萍,蒋爱兰,余榛榛,施曼玲. 抗麦草畏多克隆抗体的制备及其间接竞争ELISA检测方法的建立[J]. 浙江大学学报(农业与生命科学版), 2012, 38(2): 153-158.
[13] 王静,刘丽,张志明,赵茂俊,潘光堂. 玉米病程相关蛋白1基因的克隆与表达分析[J]. 浙江大学学报(农业与生命科学版), 2012, 38(1): 35-42.
[14] 丁美会,金凤,沈立荣,陈正贤. 中华蜜蜂王浆抗菌肽Acc- royalisin基因原核表达及多克隆抗体制备[J]. 浙江大学学报(农业与生命科学版), 2010, 36(6): 609-614.
[15] 尚海丽,周雪平,吴建祥;. 免疫斑点法和免疫捕获RT-PCR检测黄瓜绿斑驳花叶病毒[J]. 浙江大学学报(农业与生命科学版), 2010, 36(5): 485-490.