Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (5): 618-632    DOI: 10.3785/j.issn.1008-9209.2022.08.051
青年科学家论坛     
基于CRISPR/Cas系统的病原核酸检测技术研究进展
李红招1,2(),王浩2(),尹睿2,乐敏1,2,李艳1,2
1.浙江大学海南研究院,海南 三亚 572025
2.浙江大学动物科学学院动物预防医学研究所/ 浙江省动物预防医学重点实验室,浙江 杭州 310058
Research advances on pathogenic nucleic acid detection technology based on CRIPSR/Cas system
Hongzhao LI1,2(),Hao WANG2(),Rui YIN2,Min YUE1,2,Yan LI1,2
1.Hainan Institute of Zhejiang University, Sanya 572025, Hainan, China
2.Institute of Preventive Veterinary Sciences/Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
 全文: PDF(4481 KB)   HTML
摘要:

作为一种古老的细菌和古菌免疫系统,规律成簇的间隔短回文重复序列及其相关蛋白[clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas), CRISPR/Cas]系统现已发展为新兴的热门基因编辑工具,极大地推动了其他多个生物学相关领域的发展。其中,通过结合CRISPR/Cas系统与核酸恒温扩增技术建立了一些新型的高效、灵敏、不依赖仪器设备的检测方法,如DNA内切酶靶向的CRISPR反式报告系统(DNA endonuclease-targeted CRISPR trans-reporter, DETECTR)、特异性高灵敏度的酶报告器系统(specific high-sensitivity enzymatic reporter unlocking, SHERLOCK)等,不但提高了CRISPR/Cas系统在不同应用场景下的检测性能,更进一步激发了其在现场检测中的应用潜力。本文基于近年来被广泛应用的3种CRISPR/Cas系统(CRISPR/Cas9、CRISPR/Cas12a以及CRISPR/Cas13)的生物核酸检测方法,阐述了CRISPR/Cas系统的生物学意义及一般作用原理,并通过回顾以往开展的CRISPR/Cas系统相关的病原检测研究,比较分析了不同检测系统的特点以及在实际应用过程中可能存在的不足,为针对不同病原在不同应用场景下建立更加高效、合理的CRISPR/Cas系统检测方法提供了有益参考。

关键词: CRISPR/Cas系统Cas蛋白病原核酸检测方法    
Abstract:

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) (CRISPR/Cas) system, an ancient bacterial and archaeal immune system, has rapidly developed into a popular gene-editing tool, which largely promotes the development of several biology-related fields. By combining the CRISPR/Cas systems with the isothermal amplification techniques, the novel and effective detection methods with high sensitivity and independence of equipment have been established, such as DNA endonuclease-targeted CRISPR trans-reporter (DETECTR) and specific high-sensitivity enzymatic reporter unlocking (SHERLOCK). These new technologies not only improve the performance of the CRISPR/Cas system in different situations, but also inspire its application potential in the on-site detection. In this review, we summarized the nucleic acid detection methods developed on the three widely-used CRISPR/Cas systems (CRISPR/Cas9, CRISPR/Cas12a, and CRISPR/Cas13), and elucidated their biological significance and the principles of action. We also reviewed the recent studies on the applications of CRISPR/Cas systems in pathogen detection, and analyzed the characteristics and possible defects of different detection systems in practical applications. This review aims to provide more constructive advice on developing adaptable and efficient CRISPR/Cas-based detection methods for different pathogens in various practical scenarios.

Key words: CRISPR/Cas system    Cas protein    pathogen    nucleic acid    detection method
收稿日期: 2022-08-05 出版日期: 2023-11-03
CLC:  S85  
基金资助: 国家重点研发计划政府间国际科技创新合作项目(2019YFE0103900);国家自然科学基金项目(31872837);浙江省自然科学基金项目(LZ22C8004);海南省科技计划三亚崖州湾科技城联合项目(2021JJLH0083)
通讯作者: 李艳     E-mail: 22017116@zju.edu.cn;11917042@zju.edu.cn
作者简介: 李红招(https://orcid.org/0000-0002-0107-826X),E-mail:22017116@zju.edu.cn|王浩(https://orcid.org/0000-0001- 6985-4643),E-mail:11917042@zju.edu.cn。|李艳,浙江大学动物科学学院“百人计划”研究员,博士生导师。中国科学院武汉病毒研究所和美国纽约州卫生部Wadsworth 中心联合培养博士,2010 年获理学博士学位。2011 年起师从美国科学院院士Nancy Speck 教授进行博士后研究。2017 年10 月加盟浙江大学动物科学学院动物医学系,研究方向为兽医病理与比较生物医学。近年来在SCI 收录期刊共发表论文30 余篇,其中在Blood、Genes & Development 等期刊以第一作者或者通信作者发表论文17 篇。作为主要完成人之一获得2018 年国家自然科学奖二等奖。主持国家重点研发计划政府间国际科技创新合作项目、国家自然科学基金面上项目和青年项目、浙江省自然科学基金重点项目、海南省自然科学基金面上项目和海南省科技计划三亚崖州湾科技城联合项目。https://orcid.org/0000-0003-4813-5783),E-mail:yanli3@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李红招
王浩
尹睿
乐敏
李艳

引用本文:

李红招,王浩,尹睿,乐敏,李艳. 基于CRISPR/Cas系统的病原核酸检测技术研究进展[J]. 浙江大学学报(农业与生命科学版), 2023, 49(5): 618-632.

Hongzhao LI,Hao WANG,Rui YIN,Min YUE,Yan LI. Research advances on pathogenic nucleic acid detection technology based on CRIPSR/Cas system. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(5): 618-632.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.08.051        https://www.zjujournals.com/agr/CN/Y2023/V49/I5/618

图1  第2类CRISPR/Cas系统的分类REC:识别叶;PI:PAM互作域;HEPN:高等真核生物和原核生物核苷酸结合域;TM:跨膜结构域。
图2  Cas9、Cas12a、Cas13a特异性识别并切割目的核酸和Cas12a、Cas13a非特异性剪切单链DNA/RNA
图3  RPA和HDA技术的扩增原理
图4  LAMP技术的扩增原理A~B.循环模板合成阶段;C.循环扩增和再循环阶段。

Cas蛋白

Cas protein

病原类型

Type of pathogen

检测方法

Detection method

病原

Pathogen

靶基因

Target gene

检测限

Limit of

detection

Cas9单股正链RNA病毒NASBACC[42]寨卡病毒lacZ600拷贝
dCas9细菌PC报告系统[52]结核分枝杆菌16S rRNA1拷贝
LbCas12a单股正链RNA病毒RT-RPA-Cas12a[53]猪繁殖与呼吸综合征病毒nsp210拷贝
LbCas12a单股正链RNA病毒AIOD-CRISPR[54]新型冠状病毒Nucleocapsid protein3拷贝
LbCas12a单股正链RNA病毒sPAMC[47]新型冠状病毒Nucleocapsid protein2.4拷贝
LbCas12a单股负链RNA病毒RT-RPA-Cas12a[55]埃博拉病毒VP306.6拷贝
LwCas13a单股负链RNA病毒RT-RPA-Cas13a[56]H7N9禽流感病毒HemagglutininHeuraminidase1 nmol/L
LwCas13a单股正链RNA病毒Cas13a[57]牛病毒性腹泻病毒1×103 pmol/L
LwCas13a单股正链RNA病毒SHINE[58]新型冠状病毒ORF1a5拷贝
LbuCas13a单股正链RNA病毒免扩增检测系统[59]新型冠状病毒Nucleocapsid protein100拷贝
LwCas13a单股正链RNA病毒SHERLOCK[22]寨卡病毒、登革热病毒2.1拷贝
LwCas13a单股正链RNA病毒RT-RPA-Cas13a[60]猪繁殖与呼吸综合征病毒Membrane protein172拷贝
LbuCas13a单股正链RNA病毒RT-RPA-Cas13a[61]新型冠状病毒Nucleocapsid protein8拷贝
表1  CRISPR/Cas系统在RNA病原检测中的应用

Cas蛋白

Cas protein

病原类型

Type of pathogen

检测方法

Detection method

病原

Pathogen

靶基因

Target gene

检测限

Limit of detection

Cas9细菌CAS-EXPAR[62]单增李斯特菌hly0.82 amol每反应体系
Cas9细菌Cas9nAR[63]

大肠埃希菌

鼠伤寒沙门菌

uidA

invA

基因组100拷贝,菌

液100 CFU每反应

体系

Cas9双链DNA病毒CASLFA[64]非洲猪瘟病毒p72200拷贝
dCas9双链DNA病毒CRISPR介导的DNA-FISH[65]

耐甲氧西林金黄色葡萄

球菌

mecA10 CFU/mL
LbCas12a细菌PCR-Cas12a[66]金黄色葡萄球菌femA1×103 CFU/mL
LbCas12a双链DNA病毒CORDS[67]非洲猪瘟病毒P721×1015 mol/L
LbCas12a单股负链DNA病毒ERA-Cas12a[68]猪圆环病毒3型Rep7拷贝
LbCas12a双链DNA病毒RPA-Cas12a[69]鳞片脱落疾病病毒ATPase40拷贝
LbCas12a细菌LAMP-Cas12a[70]副溶血性弧菌tlh30拷贝
AsCas12a双链DNA病毒基于Cas12a的比色检测法[71]非洲猪瘟病毒P72

肉眼可见,最低200

拷贝

LbCas12a双链DNA病毒DETECTR[45]

人乳头状瘤病毒16型、

人乳头状瘤病毒18型

L110拷贝
LwCas13a单股负链DNA病毒RT-RPA-Cas13a[72]犬细小病毒2型1×102 amol/L
LbuCas13a细菌APC-Cas[73]肠炎沙门菌sefA1 CFU每反应体系
LwCas13a细菌CCB检测法[74]金黄色葡萄球菌nuc1 amol/L
LbuCas13a细菌

发光RNA适体信号传导-CRISPR-

Cas13a的混合读取检测法[75]

蜡样芽孢杆菌16S rRNA10 CFU每反应体系
表2  CRISPR/Cas系统在DNA病原检测中的应用
图5  基于CRISPR/Cas12a和CRISPR/Cas13a检测系统的操作流程
1 MARTZY R, KOLM C, KRSKA R, et al. Challenges and perspectives in the application of isothermal DNA amplifi-cation methods for food and water analysis[J]. Analytical and Bioanalytical Chemistry, 2019, 411(9): 1695-1702. DOI: 10.1007/s00216-018-1553-1
doi: 10.1007/s00216-018-1553-1
2 RATH D, AMLINGER L, RATH A, et al. The CRISPR-Cas immune system: biology, mechanisms and applications[J]. Biochimie, 2015, 117: 119-128. DOI: 10.1016/j.biochi.2015.03.025
doi: 10.1016/j.biochi.2015.03.025
3 MAKAROVA K S, WOLF Y I, KOONIN E V. Comparative genomics of defense systems in archaea and bacteria[J]. Nucleic Acids Research, 2013, 41(8): 4360-4377. DOI: 10.1093/nar/gkt157
doi: 10.1093/nar/gkt157
4 GILBERT L A, LARSON M H, MORSUT L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J]. Cell, 2013, 154(2): 442-451. DOI: 10.1016/j.cell.2013.06.044
doi: 10.1016/j.cell.2013.06.044
5 AGARWAL N, History GUPTA R., evolution and classification of CRISPR-Cas associated systems[J]. Progress in Molecular Biology and Translational Science, 2021, 179: 11-76. DOI: 10.1016/bs.pmbts.2020.12.012
doi: 10.1016/bs.pmbts.2020.12.012
6 NAJAH S, SAULNIER C, PERNODET J L, et al. Design of a generic CRISPR-Cas9 approach using the same sgRNA to perform gene editing at distinct loci[J]. BMC Biotechnology, 2019, 19: 18. DOI: 10.1186/s12896-019-0509-7
doi: 10.1186/s12896-019-0509-7
7 BAO A L, BURRITT D J, CHEN H F, et al. The CRISPR/Cas9 system and its applications in crop genome editing[J]. Critical Reviews in Biotechnology, 2019, 39(3): 321-336. DOI: 10.1080/07388551.2018.1554621
doi: 10.1080/07388551.2018.1554621
8 GASIUNAS G, BARRANGOU R, HORVATH P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. PNAS, 2012, 109(39): E2579-E2586. DOI: 10.1073/pnas.1208507109
doi: 10.1073/pnas.1208507109
9 WATTERS K E, FELLMANN C, BAI H B, et al. Systematic discovery of natural CRISPR-Cas12a inhibitors[J]. Science, 2018, 362(6411): 236-239. DOI: 10.1126/science.aau5138
doi: 10.1126/science.aau5138
10 MAKAROVA K S, KOONIN E V. Annotation and Classifi-cation of CRISPR-Cas systems[M]//LUNDGREN M, CHARPENTIER E, FINERAN P C. CRISPR. Methods in Molecular Biology. Vol. 1311. New York: Humana Press, 2015: 47-75. DOI: 10.1007/978-1-4939-2687-9_4
doi: 10.1007/978-1-4939-2687-9_4
11 CHEN P, ZHOU J, WAN Y B, et al. A Cas12a ortholog with stringent PAM recognition followed by low off-target editing rates for genome editing[J]. Genome Biology, 2020, 21: 78. DOI: 10.1186/s13059-020-01989-2
doi: 10.1186/s13059-020-01989-2
12 ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3): 759-771. DOI: 10.1016/j.cell.2015.09.038
doi: 10.1016/j.cell.2015.09.038
13 JIANG Y, QIAN F H, YANG J J, et al. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum [J]. Nature Communications, 2017, 8: 15179. DOI: 10.1038/ncomms15179
doi: 10.1038/ncomms15179
14 DONG D, REN K, QIU X L, et al. The crystal structure of Cpf1 in complex with CRISPR RNA[J]. Nature, 2016, 532(7600): 522-526. DOI: 10.1038/nature17944
doi: 10.1038/nature17944
15 BANAKAR R, SCHUBERT M, COLLINGWOOD M, et al. Comparison of CRISPR-Cas9/Cas12a ribonucleoprotein complexes for genome editing efficiency in the rice phytoene desaturase (OsPDS)gene[J]. Rice, 2020, 13: 4. DOI: 10.1186/s12284-019-0365-z
doi: 10.1186/s12284-019-0365-z
16 YAMANO T, NISHIMASU H, ZETSCHE B, et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA[J]. Cell, 2016, 165(4): 949-962. DOI: 10.1016/j.cell.2016.04.003
doi: 10.1016/j.cell.2016.04.003
17 MAULE G, CASINI A, MONTAGNA C, et al. Allele specific repair of splicing mutations in cystic fibrosis through AsCas12a genome editing[J]. Nature Communications, 2019, 10: 3556. DOI: 10.1038/s41467-019-11454-9
doi: 10.1038/s41467-019-11454-9
18 KIM D, KIM J, HUR J K, et al. Erratum: genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells[J]. Nature Biotechnology, 2016, 34(8): 888. DOI: 10.1038/nbt0816-888a
doi: 10.1038/nbt0816-888a
19 SWARTS D C, JINEK M. Cas9 versus Cas12a/Cpf1: structure-function comparisons and implications for genome editing[J]. Wiley Interdisciplinary Reviews. RNA, 2018, 9(5): e1481. DOI: 10.1002/wrna.1481
doi: 10.1002/wrna.1481
20 SHMAKOV S, ABUDAYYEH O O, MAKAROVA K S, et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems[J]. Molecular Cell, 2015, 60(3): 385-397. DOI: 10.1016/j.molcel.2015.10.008
doi: 10.1016/j.molcel.2015.10.008
21 LIU L, LI X Y, MA J, et al. The molecular architecture for RNA-guided RNA cleavage by Cas13a[J]. Cell, 2017, 170(4): 714-726.e10. DOI: 10.1016/j.cell.2017.06.050
doi: 10.1016/j.cell.2017.06.050
22 GOOTENBERG J S, ABUDAYYEH O O, LEE J W, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 2017, 356(6336): 438-442. DOI: 10.1126/science.aam9321
doi: 10.1126/science.aam9321
23 KELLNER M J, KOOB J G, GOOTENBERG J S, et al. SHERLOCK: nucleic acid detection with CRISPR nucleases[J]. Nature Protocols, 2019, 14(10): 2986-3012. DOI: 10.1038/s41596-019-0210-2
doi: 10.1038/s41596-019-0210-2
24 SMARGON A A, COX D B T, PYZOCHA N K, et al. Cas13b is a type Ⅵ-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28[J]. Molecular Cell, 2017, 65(4): 618-630. DOI: 10.1016/j.molcel.2016.12.023
doi: 10.1016/j.molcel.2016.12.023
25 COX D B T, GOOTENBERG J S, ABUDAYYEH O O, et al. RNA editing with CRISPR-Cas13[J]. Science, 2017, 358(6366): 1019-1027. DOI: 10.1126/science.aaq0180
doi: 10.1126/science.aaq0180
26 KONERMANN S, LOTFY P, BRIDEAU N J, et al. Trans-criptome engineering with RNA-targeting type Ⅵ-D CRISPR effectors[J]. Cell, 2018, 173(3): 665-676. DOI: 10.1016/j.cell.2018.02.033
doi: 10.1016/j.cell.2018.02.033
27 ZHANG B, YE Y M, YE W W, et al. Two HEPN domains dictate CRISPR RNA maturation and target cleavage in Cas13d[J]. Nature Communications, 2019, 10: 2544. DOI: 10.1038/s41467-019-10507-3
doi: 10.1038/s41467-019-10507-3
28 ZHOU H B, SU J L, HU X D, et al. Glia-to-neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice[J]. Cell, 2020, 181(3): 590-603. DOI: 10.1016/j.cell.2020.03.024
doi: 10.1016/j.cell.2020.03.024
29 BROGAN D J, CHAVERRA-RODRIGUEZ D, LIN C P, et al. Development of a rapid and sensitive casrx-based diagnostic assay for SARS-CoV-2[J]. ACS Sensors, 2021, 6(11): 3957-3966. DOI: 10.1021/acssensors.1c01088
doi: 10.1021/acssensors.1c01088
30 SAIKI R K, GELFAND D H, STOFFEL S, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase[J]. Science, 1988, 239(4839): 487-491.
31 HEID C A, STEVENS J, LIVAK K J, et al. Real time quantitative PCR[J]. Genome Research, 1996, 6(10): 986-994.
32 VOGELSTEIN B, KINZLER K W. Digital PCR[J]. PNAS, 1999, 96(16): 9236-9241.
33 WANG Q, ZHANG B B, XU X H, et al. CRISPR-typing PCR (ctPCR), a new Cas9-based DNA detection method[J]. Scientific Reports, 2018, 8: 14126. DOI: 10.1038/s41598-018-32329-x
doi: 10.1038/s41598-018-32329-x
34 ZHANG B B, WANG Q, XU X H, et al. Detection of target DNA with a novel Cas9/sgRNAs-associated reverse PCR (CARP) technique[J]. Analytical and Bioanalytical Chemistry, 2018, 410(12): 2889-2900. DOI: 10.1007/s00216-018-0873-5
doi: 10.1007/s00216-018-0873-5
35 ZHANG B B, XIA Q, WANG Q, et al. Detecting and typing target DNA with a novel CRISPR-typing PCR (ctPCR) technique[J]. Analytical Biochemistry, 2018, 561/562: 37-46. DOI: 10.1016/j.ab.2018.09.012
doi: 10.1016/j.ab.2018.09.012
36 GAO J L, WU L, YANG D D, et al. A one-pot CRISPR/Cas9-typing PCR for DNA detection and genotyping[J]. The Journal of Molecular Diagnostics, 2021, 23(1): 46-60. DOI: 10.1016/j.jmoldx.2020.10.004
doi: 10.1016/j.jmoldx.2020.10.004
37 PIEPENBURG O, WILLIAMS C H, STEMPLE D L, et al. DNA detection using recombination proteins[J]. PLoS Biology, 2006, 4(7): e204. DOI: 10.1371/journal.pbio.0040204
doi: 10.1371/journal.pbio.0040204
38 XU Y, KIM H J, KAYS A, et al. Simultaneous amplification and screening of whole plasmids using the T7 bacteriophage replisome[J]. Nucleic Acids Research, 2006, 34(13): e98. DOI: 10.1093/nar/gkl547
doi: 10.1093/nar/gkl547
39 VINCENT M, XU Y, KONG H M. Helicase-dependent isothermal DNA amplification[J]. Scientific Report, 2004, 5(8): 795-800. DOI: 10.1038/sj.embor.7400200
doi: 10.1038/sj.embor.7400200
40 GOLDMEYER J, KONG H M, TANG W. Development of a novel one-tube isothermal reverse transcription thermophilic helicase-dependent amplification platform for rapid RNA detection[J]. The Journal of Molecular Diagnostics, 2007, 9(5): 639-644. DOI: 10.2353/jmoldx.2007.070012
doi: 10.2353/jmoldx.2007.070012
41 NOTOMI T, OKAYAMA H, MASUBUCHI H, et al. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Research, 2000, 28(12): e63. DOI: 10.1093/nar/28.12.e63
doi: 10.1093/nar/28.12.e63
42 PARDEE K, GREEN A A, TAKAHASHI M K, et al. Rapid, low-cost detection of Zika virus using programmable bio-molecular components[J]. Cell, 2016, 165(5): 1255-1266. DOI: 10.1016/j.cell.2016.04.059
doi: 10.1016/j.cell.2016.04.059
43 ZHOU W H, HU L, YING L M, et al. A CRISPR-Cas9-triggered strand displacement amplification method for ultra-sensitive DNA detection[J]. Nature Communications, 2018, 9: 5012. DOI: 10.1038/s41467-018-07324-5
doi: 10.1038/s41467-018-07324-5
44 ZHANG Y H, QIAN L, WEI W J, et al. Paired design of dCas9 as a systematic platform for the detection of featured nucleic acid sequences in pathogenic strains[J]. ACS Synthetic Biology, 2017, 6(2): 211-216. DOI: 10.1021/acssynbio.6b00215
doi: 10.1021/acssynbio.6b00215
45 CHEN J S, MA E, HARRINGTON L B, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387): 436-439. DOI: 10.1126/science.aar6245
doi: 10.1126/science.aar6245
46 LI Y Y, MANSOUR H, WANG T, et al. Naked-eye detection of grapevine red-blotch viral infection using a plasmonic CRISPR Cas12a assay[J]. Analytical Chemistry, 2019, 91(18): 11510-11513. DOI: 10.1021/acs.analchem.9b03545
doi: 10.1021/acs.analchem.9b03545
47 LU S H, TONG X H, HAN Y, et al. Fast and sensitive detection of SARS-CoV-2 RNA using suboptimal protospacer adjacent motifs for Cas12a[J]. Nature Biomedical Engineering, 2022, 6(3): 286-297. DOI: 10.1038/s41551-022-00861-x
doi: 10.1038/s41551-022-00861-x
48 ABUDAYYEH O O, GOOTENBERG J S, KONERMANN S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299): aaf5573. DOI: 10.1126/science.aaf5573
doi: 10.1126/science.aaf5573
49 EAST-SELETSKY A, O’CONNELL M R, KNIGHT S C, et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection[J]. Nature, 2016, 538(7624): 270-273. DOI: 10.1038/nature19802
doi: 10.1038/nature19802
50 GOOTENBERG J S, ABUDAYYEH O O, KELLNER M J, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6[J]. Science, 2018, 360(6387): 439-444. DOI: 10.1126/science.aaq0179
doi: 10.1126/science.aaq0179
51 MYHRVOLD C, FREIJE C A, GOOTENBERG J S, et al. Field-deployable viral diagnostics using CRISPR-Cas13[J]. Science, 2018, 360(6387): 444-448. DOI: 10.1126/science.aas8836
doi: 10.1126/science.aas8836
52 ZHANG Y H, WANG Y, XU L Z, et al. Paired dCas9 design as a nucleic acid detection platform for pathogenic strains[J]. Methods, 2022, 203: 70-77. DOI: 10.1016/j.ymeth.2021.06.003
doi: 10.1016/j.ymeth.2021.06.003
53 LIU S Y, TAO D G, LIAO Y Y, et al. Highly sensitive CRISPR/Cas12a-based fluorescence detection of porcine reproductive and respiratory syndrome virus[J]. ACS Synthetic Biology, 2021, 10(10): 2499-2507. DOI: 10.1021/acssynbio.1c00103
doi: 10.1021/acssynbio.1c00103
54 DING X, YIN K, LI Z Y, et al. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay[J]. Nature Communications, 2020, 11: 4711. DOI: 10.1038/s41467-020-18575-6
doi: 10.1038/s41467-020-18575-6
55 ENGLISH M A, SOENKSEN L R, GAYET R V, et al. Programmable CRISPR-responsive smart materials[J]. Science, 2019, 365(6455): 780-785. DOI: 10.1126/science.aaw5122
doi: 10.1126/science.aaw5122
56 LIU Y F, XU H P, LIU C, et al. CRISPR-Cas13a nano-machine based simple technology for avian influenza A (H7N9) virus on-site detection[J]. Journal of Biomedical Nanotech-nology, 2019, 15(4): 790-798. DOI: 10.1166/jbn.2019.2742
doi: 10.1166/jbn.2019.2742
57 YAO R, XU Y R, WANG L, et al. CRISPR-Cas13a-based detection for bovine viral diarrhea virus[J]. Frontiers in Veterinary Science, 2021, 8: 603919. DOI: 10.3389/fvets.2021.603919
doi: 10.3389/fvets.2021.603919
58 ARIZTI-SANZ J, FREIJE C A, STANTON A C, et al. Stream-lined inactivation, amplification, and Cas13-based detection of SARS-CoV-2[J]. Nature Communications, 2020, 11: 5921. DOI: 10.1038/s41467-020-19097-x
doi: 10.1038/s41467-020-19097-x
59 FOZOUNI P, SON S, DE LEÓN DERBY M D, et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy[J]. Cell, 2021, 184(2): 323-333. e9. DOI: 10.1016/j.cell.2020.12.001
doi: 10.1016/j.cell.2020.12.001
60 CHANG Y F, DENG Y, LI T Y, et al. Visual detection of porcine reproductive and respiratory syndrome virus using CRISPR-Cas13a[J]. Transboundary and Emerging Diseases, 2020, 67(2): 564-571. DOI: 10.1111/tbed.13368
doi: 10.1111/tbed.13368
61 TIAN T, QIU Z Q, JIANG Y Z, et al. Exploiting the orthogonal CRISPR-Cas12a/Cas13a trans-cleavage for dual-gene virus detection using a handheld device[J]. Biosensors & Bioelectronics, 2022, 196: 113701. DOI: 10.1016/j.bios.2021.113701
doi: 10.1016/j.bios.2021.113701
62 HUANG M Q, ZHOU X M, WANG H Y, et al. Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection[J]. Analytical Chemistry, 2018, 90(3): 2193-2200. DOI: 10.1021/acs.analchem.7b04542
doi: 10.1021/acs.analchem.7b04542
63 WANG L Y, SHEN X Y, WANG T, et al. A lateral flow strip combined with Cas9 nickase-triggered amplification reaction for dual food-borne pathogen detection[J]. Biosensors & Bioelectronics, 2020, 165: 112364. DOI: 10.1016/j.bios.2020.112364
doi: 10.1016/j.bios.2020.112364
64 WANG X S, XIONG E H, TIAN T, et al. Clustered regularly interspaced short palindromic repeats/Cas9-mediated lateral flow nucleic acid assay[J]. ACS Nano, 2020, 14(2): 2497-2508. DOI: 10.1021/acsnano.0c00022
doi: 10.1021/acsnano.0c00022
65 GUK K, KEEM J O, HWANG S G, et al. A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH method, antibody-like dCas9/sgRNA complex[J]. Biosensors & Bioelectronics, 2017, 95: 67-71. DOI: 10.1016/j.bios.2017.04.016
doi: 10.1016/j.bios.2017.04.016
66 PENG L, ZHOU J, YIN L J, et al. Integration of logic gates to CRISPR/Cas12a system for rapid and sensitive detection of pathogenic bacterial genes[J]. Analytica Chimica Acta, 2020, 1125: 162-168. DOI: 10.1016/j.aca.2020.05.017
doi: 10.1016/j.aca.2020.05.017
67 BAI J, LIN H S, LI H J, et al. Cas12a-based on-site and rapid nucleic acid detection of African swine fever[J]. Frontiers in Microbiology, 2019, 10: 2830. DOI: 10.3389/fmicb.2019.02830
doi: 10.3389/fmicb.2019.02830
68 ZHANG W Y, XU L, LIU Q, et al. Enzymatic recombinase amplification coupled with CRISPR-Cas12a for ultrasensitive, rapid, and specific Porcine circovirus 3 detection[J]. Molecular and Cellular Probes, 2021, 59: 101763. DOI: 10.1016/j.mcp.2021.101763
doi: 10.1016/j.mcp.2021.101763
69 SUKONTA T, SENAPIN S, MEEMETTA W, et al. CRISPR-based platform for rapid, sensitive and field-deployable detection of scale drop disease virus in Asian sea bass (Lates calcarifer)[J]. Journal of Fish Diseases, 2022, 45(1): 107-120. DOI: 10.1111/jfd.13541
doi: 10.1111/jfd.13541
70 WU H, CHEN Y J, YANG Q Q, et al. A reversible valve-assisted chip coupling with integrated sample treatment and CRISPR/Cas12a for visual detection of Vibrio parahaemoly-ticus [J]. Biosensors & Bioelectronics, 2021, 188: 113352. DOI: 10.1016/j.bios.2021.113352
doi: 10.1016/j.bios.2021.113352
71 YUAN C Q, TIAN T, SUN J, et al. Universal and naked-eye gene detection platform based on the clustered regularly interspaced short palindromic repeats/Cas12a/13a system[J]. Analytical Chemistry, 2020, 92(5): 4029-4037. DOI: 10.1021/acs.analchem.9b05597
doi: 10.1021/acs.analchem.9b05597
72 KHAN H, KHAN A, LIU Y F, et al. CRISPR-Cas13a mediated nanosystem for attomolar detection of canine parvovirus type 2[J]. Chinese Chemical Letters, 2019, 30(12): 2201-2204. DOI: 10.1016/j.cclet.2019.10.032
doi: 10.1016/j.cclet.2019.10.032
73 SHEN J J, ZHOU X M, SHAN Y Y, et al. Sensitive detection of a bacterial pathogen using allosteric probe-initiated catalysis and CRISPR-Cas13a amplification reaction[J]. Nature Communications, 2020, 11: 267. DOI: 10.1038/s41467-019-14135-9
doi: 10.1038/s41467-019-14135-9
74 ZHOU J, YIN L J, DONG Y N, et al. CRISPR-Cas13a based bacterial detection platform: sensing pathogen Staphylococcus aureus in food samples[J]. Analytica Chimica Acta, 2020, 1127: 225-233. DOI: 10.1016/j.aca.2020.06.041
doi: 10.1016/j.aca.2020.06.041
75 ZHANG T, ZHOU W H, LIN X Y, et al. Light-up RNA aptamer signaling-CRISPR-Cas13a-based mix-and-read assays for profiling viable pathogenic bacteria[J]. Biosensors & Bioelectronics, 2021, 176: 112906. DOI: 10.1016/j.bios.2020.112906
李艳,浙江大学动物科学学院“百人计划”研究员,博士生导师。中国科学院武汉病毒研究所和美国纽约州卫生部Wadsworth中心联合培养博士,2010年获理学博士学位。2011年起师从美国科学院院士Nancy Speck教授进行博士后研究。2017年10月加盟浙江大学动物科学学院动物医学系,研究方向为兽医病理与比较生物医学。近年来在SCI收录期刊共发表论文30余篇,其中在Blood、Genes & Development等期刊以第一作者或者通信作者发表论文17篇。作为主要完成人之一获得2018年国家自然科学奖二等奖。主持国家重点研发计划政府间国际科技创新合作项目、国家自然科学基金面上项目和青年项目、浙江省自然科学基金重点项目、海南省自然科学基金面上项目和海南省科技计划三亚崖州湾科技城联合项目。
doi: 10.1016/j.bios.2020.112906
[1] 陈勇,江唯健,王加俊,张帆,沈立荣. 超高效液相色谱-串联质谱法定量检测蜂王浆主蛋白1~3[J]. 浙江大学学报(农业与生命科学版), 2022, 48(6): 776-786.
[2] 谢婷,罗金燕,陈磊,杜伟,朱洁,李斌. 黄瓜绿斑驳花叶病毒病防治方法的比较与展望[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 279-288.
[3] 王德前,黄敏婕,郭海坤,方勐鸽,李君竹,董捷. 浙江省淳安县中华蜜蜂囊状幼虫病毒与蜂房球菌感染情况调查[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 389-394.
[4] 王凤丽,裘纪莹,戴美学,陈蕾蕾,赵双枝,辛雪,周庆新. 甜樱桃采后贮藏环境中病原菌的分离鉴定及其致病力研究[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1): 126-134.
[5] 吴姗, 李可, 方云, 楼成杰, 虞惠贞, 张明哲, 帅江冰, 张晓峰. 单核细胞增生李斯特菌和致病性弧菌的双重肽核酸原位荧光杂交检测[J]. 浙江大学学报(农业与生命科学版), 2018, 44(6): 659-666.
[6] 吕靖雯, 刘蕊, 李国华, 李红叶, 王洪凯. 柚果面枝孢菌斑点病病原鉴定[J]. 浙江大学学报(农业与生命科学版), 2018, 44(6): 687-694.
[7] 卢海燕, 徐重新, 张宵, 梁颖, 刘贤金. 柠檬烯对食源性病原菌的抑菌活性(英文)[J]. 浙江大学学报(农业与生命科学版), 2016, 42(3): 306-312.
[8] 崔海瑞,李春楠,孙洁,崔碧珺. 几种因素对芹菜CEL I核酸酶提取的影响[J]. 浙江大学学报(农业与生命科学版), 2011, 37(6): 591-591.
[9] 章晓栋,孙 静,李建荣,于 涟. 重组甲基转移酶致弱水疱性口炎病毒的致病性与免疫原性[J]. 浙江大学学报(农业与生命科学版), 2011, 37(4): 355-362.
[10] 韦继光 徐同 黄伟华 郭良栋 潘秀湖. 从分子系统发育探讨内生拟盘多毛孢与病原拟盘多毛孢的关系[J]. 浙江大学学报(农业与生命科学版), 2008, 34(4): 367-373.
[11] 谭培生  罗曼  盛清  关怡新  姚善泾. 体外重折叠核糖核酸酶A及其荧光结构表征[J]. 浙江大学学报(农业与生命科学版), 2006, 32(5): 483-488.
[12] 应盛华  邓米霞  冯明光. 三种丝孢类生防真菌孢子类疏水蛋白的含量与组分比较[J]. 浙江大学学报(农业与生命科学版), 2006, 32(4): 401-405.
[13] 韦强  鲍国连  王一成  徐丽华  季权安. 鸭疫里氏杆菌赘生物提取及其理化特性研究[J]. 浙江大学学报(农业与生命科学版), 2005, 31(3): 250-254.
[14] 王友明  许梓荣. 添加酵母核酸对肉鸡肉质的影响 [J]. 浙江大学学报(农业与生命科学版), 2003, 29(5): 569-574.
[15] Ngueko R B  徐同. 哈茨木霉C184菌株对喀麦隆香蕉及大蕉根部病原菌的体外拮抗作用(英文)[J]. 浙江大学学报(农业与生命科学版), 2002, 28(4): 407-410.