Please wait a minute...
浙江大学学报(农业与生命科学版)  2021, Vol. 47 Issue (6): 695-703    DOI: 10.3785/j.issn.1008-9209.2021.07.071
综述     
富含花色苷的发酵型果酒色泽衰减原因及机制分析
梁舒妍1(),白卫滨2,刘嘉惠1,孙建霞1()
1.广东工业大学轻工化工学院,广东省植物资源生物炼制重点实验室,广州 510006
2.暨南大学理工学院,食品安全与营养研究院,广州 510632
Analysis on the cause and mechanism of color lose of fermented fruit wine rich in anthocyanins
Shuyan LIANG1(),Weibin BAI2,Jiahui LIU1,Jianxia SUN1()
1.Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
2.Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China
 全文: PDF(894 KB)   HTML
摘要:

色泽稳定性差一直是发酵型果酒产业发展的瓶颈。本文从影响果酒色泽的重要因子花色苷及其衍生物入手,对加工贮藏过程中与花色苷相关的果酒色泽衰减现象、原因进行了分析,并对目前国内外为改善产品色泽稳定性采用的物理、化学方法等进行了综述,以期为果酒色泽的稳定性研究提供一定的理论基础,从而加快我国水果精深加工产业发展。

关键词: 花色苷果酒色泽稳定性    
Abstract:

Poor color stability is the bottleneck, which restricting the development of fermented fruit wines rich in anthocyanins. In this paper, anthocyanins and their derivatives, which are important factors affecting the color loss of fermented fruit wines, were analyzed, and the physical and chemical methods used at home and abroad to improve the color stability of fruit wine were summarized. This review may provide a certain theoretical basis for the research on the color stability of fruit wine, and promote the development of fruit deep processing industries.

Key words: anthocyanin    fruit wine    color    stability
收稿日期: 2021-07-07 出版日期: 2021-12-25
CLC:  TS 261.4  
基金资助: 国家自然科学基金(32172220);广州市民生科技攻关项目(201903010082)
通讯作者: 孙建霞     E-mail: syliang579@163.com;jxsun1220@163.com
作者简介: 梁舒妍(https://orcid.org/0000-0003-2866-0396),E-mail:syliang579@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
梁舒妍
白卫滨
刘嘉惠
孙建霞

引用本文:

梁舒妍,白卫滨,刘嘉惠,孙建霞. 富含花色苷的发酵型果酒色泽衰减原因及机制分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(6): 695-703.

Shuyan LIANG,Weibin BAI,Jiahui LIU,Jianxia SUN. Analysis on the cause and mechanism of color lose of fermented fruit wine rich in anthocyanins. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(6): 695-703.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.07.071        http://www.zjujournals.com/agr/CN/Y2021/V47/I6/695

1 王秋芳.利用资源优势,发展以果代粮酿酒.酿酒,1997(3):3-4.
WANG Q F. Utilizing resource advantages to develop wine making with fruit instead of grain. Liquor Making, 1997(3):3-4. (in Chinese)
2 陈静,程晓雨,潘明,等.中国果酒生产技术研究现状及其产业未来发展趋势.食品工业科技,2017,38(2):383-389. DOI:10.13386/j.issn1002-0306.2017.02.066
CHEN J, CHENG X Y, PAN M, et al. Research status and future development trends of fruit wine industry in China. Science and Technology of Food Industry, 2017,38(2):383-389. (in Chinese with English abstract)
doi: 10.13386/j.issn1002-0306.2017.02.066
3 梁艳玲,陈麒,伍彦华,等.果酒的研究与开发现状.中国酿造,2020,39(12):5-9. DOI:10.11882/j.issn.0254-5071.2020.12.002
LIANG Y L, CHEN Q, WU Y H,et al. Research and development status of fruit wine. China Brewing, 2020,39(12):5-9. (in Chinese with English abstract)
doi: 10.11882/j.issn.0254-5071.2020.12.002
4 MIERCZYNSKA-VASILEV A, BINDON K, GAWEL R, et al. Fluorescence correlation spectroscopy to unravel the interactions between macromolecules in wine. Food Chemistry, 2021,352:129343. DOI:10.1016/j.foodchem.2021.129343
doi: 10.1016/j.foodchem.2021.129343
5 HE F, LIANG N N, MU L, et al. Anthocyanins and their variation in red wines. Ⅱ. Anthocyanin derived pigments and their color evolution. Molecules, 2012,17(2):1483-1519. DOI:10.3390/molecules17021483
doi: 10.3390/molecules17021483
6 FORINO M, PICARIELLO L, RINALDI A, et al. How must pH affects the level of red wine phenols. LWT-Food Science and Technology, 2020,129:109546. DOI:10.1016/j.lwt.2020.109546
doi: 10.1016/j.lwt.2020.109546
7 LIU S X, YANG H Y, LI S Y, et al. Polyphenolic compositions and chromatic characteristics of bog bilberry syrup wines. Molecules, 2015,20(11):19865-19877. DOI:10.3390/molecules201119662
doi: 10
8 ZHANG X K, LAN Y B, HUANG Y, et al. Targeted metabolomics of anthocyanin derivatives during prolonged wine aging: evolution, color contribution and aging prediction. Food Chemistry, 2021,339:127795. DOI:10.1016/j.foodchem.2020.127795
doi: 10.1016/j.foodchem.2020.127795
9 HORNEDO-ORTEGA R, áLVAREZ-FERNáNDEZ M A, CEREZO A B, et al. Influence of fermentation process on the anthocyanin composition of wine and vinegar elaborated from strawberry. Journal of Food Science, 2017,82(2):364-372. DOI:10.1111/1750-3841.13624
doi: 10.1111/1750-3841.13624
10 吴梦.发酵型桑葚酒酚类物质、抗氧化能力及澄清效果的研究.江苏,镇江:江苏大学,2019:21-50. DOI:10.24818/ea/2019/50
WU M. Study on phenolics, antioxidant capacity and clarification effect of fermented mulberry wine. Zhenjiang, Jiang Su: Jiangsu University, 2019:21-50. (in Chinese with English abstract)
doi: 10.24818/ea/2019/50
11 刘虹.蓝莓酒发酵过程中组分及色度的变化.辽宁,大连:大连工业大学,2013:25-43. DOI:10.25103/jestr.071.04
LIU H. Change of the components and chroma during the blueberry wine’s fermentation. Dalian, Liaoning: Dalian Polytechnic University, 2013:25-43. (in Chinese with English abstract)
doi: 10.25103/jestr.071.04
12 SOKó?-??TOWSKA A, KUCHARSKA A Z, WI?SKA K, et al. Composition and antioxidant activity of red fruit liqueurs. Food Chemistry, 2014,157:533-539. DOI:10.1016/j.foodchem.2014.02.083
doi: 10.1016/j.foodchem.2014.02.083
13 GAMBUTI A, PICARIELLO L, RINALDI A, et al. New insights into the formation of precipitates of quercetin in Sangiovese wines. Journal of Food Science and Technology, 2020,57(7):2602-2611. DOI:10.1007/s13197-020-04296-7
doi: 10.1007/s13197-020-04296-7
14 周金虎,方尚玲,曹敬华,等.桑葚酒的澄清和稳定性研究.酿酒,2017,44(6):54-60. DOI:10.3969/j.issn.1002-8110.2017.06.017
ZHOU J H, FANG S L, CAO J H, et al. Study on clarification and stability for mulberry wine. Liquor Making, 2017,44(6):54-60. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-8110.2017.06.017
15 ZHANG Z, LI J, FAN L. Evaluation of the composition of Chinese bayberry wine and its effects on the color changes during storage. Food Chemistry, 2019,276:451-457. DOI:10.1016/j.foodchem.2018.10.054
doi: 10
16 LI X S, ZHANG L, PENG Z Y, et al. The impact of ultrasonic treatment on blueberry wine anthocyanin color and its in-vitro anti-oxidant capacity. Food Chemistry, 2020,333:127455. DOI:10.1016/j.foodchem.2020.127455
doi: 10.1016/j.foodchem.2020.127455
17 BENUCCI I. Impact of post-bottling storage conditions on colour and sensory profile of a rosé sparkling wine. LWT-Food Science and Technology, 2020,118:108732. DOI:10.1016/j.lwt.2019.108732
doi: 10.1016/j.lwt.2019.108732
18 孙茜,李文超,王振平.酒精发酵及陈酿中不同因素对葡萄果皮色素稳定性的影响.中外葡萄与葡萄酒,2013(5):12-16. DOI:10.13414/j.cnki.zwpp.2013.05.012
SUN Q, LI W C, WANG Z P. Effect of different factors on the stability of grape skin pigment in alcoholic fermentation and aging process. Sino-Overseas Grapevine & Wine, 2013(5):12-16. (in Chinese with English abstract)
doi: 10.13414/j.cnki.zwpp.2013.05.012
19 ?ENER H. Effect of temperature and duration of maceration on colour and sensory properties of red wine: a review. South African Journal of Enology and Viticulture, 2018,32(2):227-234. DOI:10.21548/39-2-3160
doi: 10.21548/39-2-3160
20 BO?I? J T, BUTINAR L, ALBREHT A, et al. The impact of Saccharomyces and non-Saccharomyces yeasts on wine colour: a laboratory study of vinylphenolic pyranoanthocyanin formation and anthocyanin cell wall adsorption. LWT-Food Science and Technology, 2020,123:109072. DOI:10.1016/j.lwt.2020.109072
doi: 10.1016/j.lwt.2020.109072
21 GAMBUTI A, SIANI T, PICARIELLO L, et al. Oxygen exposure of tannins-rich red wines during bottle aging. Influence on phenolics and color, astringency markers and sensory attributes. European Food Research and Technology, 2017,243(4):669-680. DOI:10.1007/s00217-016-2780-3
doi: 10.1007/s00217-016-2780-3
22 ALCALDE-EON C, GARCíA-ESTéVEZ I, PUENTE V, et al. Color stabilization of red wines. A chemicaland colloidal approach. Journal of Agricultural and Food Chemistry, 2014,62(29):6984-6994. DOI:10.1021/jf4055825
doi: 10.1021/jf4055825
23 王建栋.超声波辅助啤酒酵母吸附蓝莓渣中酚类物质的特性研究.南京:南京农业大学,2018:25-37. DOI:10.5152/tjg.2021.20282
WANG J D. Ultrasound-assisted biosorption of phenolic compounds from blueberry pomace by brewery yeast. Nanjing: Nanjing Agricultural University, 2018:25-37. (in Chinese with English abstract)
doi: 10.5152/tjg.2021.20282
24 ECHEVERRIGARAY S, SCARIOT F J, MENEGOTTO M, et al. Anthocyanin adsorption by Saccharomyces cerevisiae during wine fermentation is associated to the loss of yeast cell wall/membrane integrity. International Journal of Food Microbiology, 2020,314:108383. DOI:10.1016/j.ijfoodmicro.2019.108383
doi: 10.1016/j.ijfoodmicro.2019.108383
25 SUN X Y, MA T T, HAN L Y, et al. Effects of copper pollution on the phenolic compound content, color, and antioxidant activity of wine. Molecules, 2017,22(5):726. DOI:10.3390/molecules22050726
doi: 10.3390/molecules22050726
26 刘书晶.桑葚酒花色苷衍生物形成规律及生物活性评价.南京:南京林业大学,2018:9-21.
LIU S J. Formation and bioactivity evaluation of anthocyanin derivatives in mulberry wine. Nanjing: Nanjing Forestry University, 2018:9-21. (in Chinese with English abstract)
27 LI L X, ZHANG M N, ZHANG S T, et al. Preparation and antioxidant activity of ethyl-linked anthocyanin-flavanol pigments from model wine solutions. Molecules, 2018,23(5):1066. DOI:10.3390/molecules23051066
doi: 10.3390/molecules23051066
28 MARQUEZ A, SERRATOSA M P, MERIDA J. Pyrano-anthocyanin derived pigments in wine: structure and formation during winemaking. Journal of Chemistry, 2013,2013:713028. DOI:10.1155/2013/713028
doi: 10.1155/2013/713028
29 MARQUEZ A, DUE?AS M, SERRATOSA M P, et al. Formation of vitisins and anthocyanin-flavanol adducts during red grape drying. Journal of Agricultural and Food Chemistry, 2012,60(27):6866-6874. DOI:10.1021/jf300998p
doi: 10.1021/jf300998p
30 FULCRAND H, BENABDELJALIL C, RIGAUD J, et al. A new class of wine pigments generated by reaction between pyruvic acid and grape anthocyanins. Phytochemistry, 1998,47(7):1401-1407. DOI:10.1016/s0031-9422(97)00772-3
doi: 10.1016/s0031-9422(97)00772-3
31 ASENSTORFER R E, MARKIDES A J, ILAND P G, et al. Formation of vitisin A during red wine fermentation and maturation. Australian Journal of Grape and Wine Research, 2003,9(1):40-46. DOI:10.1111/j.1755-0238.2003.tb00230.x
doi: 10.1111/j.1755-0238.2003.tb00230.x
32 TENG B, HAYASAKA Y, SMITH P A, et al. Effect of grape seed and skin tannin molecular mass and composition on the rate of reaction with anthocyanin and subsequent formation of polymeric pigments in the presence of acetaldehyde. Journal of Agricultural and Food Chemistry, 2019,67(32):8938-8949. DOI:10.1021/acs.jafc.9b01498
doi: 10.1021/acs.jafc.9b01498
33 CASTRO-LóPEZ L D R, GóMEZ-PLAZA E, ORTEGA-REGULES A, et al. Role of cell wall deconstructing enzymes in the proanthocyanidin-cell wall adsorption-desorption phenomena. Food Chemistry, 2016,196:526-532. DOI:10.1016/j.foodchem.2015.09.080
doi: 10.1016/j.foodchem.2015.09.080
34 GENERALI? MEKINI? I, SKRA?I? ?, KOKEZA A, et al. Effect of enzyme-assisted vinification on wine phenolics, colour components, and antioxidant capacity. Polish Journal of Food and Nutrition Sciences, 2020,70(2):113-123. DOI:10.31883/pjfns/115461
doi: 10.31883/pjfns/115461
35 王兴吉,王克芬,闫宜江,等.水解毛桃果酒中花色素苷的β-葡萄糖苷酶酶学特性.食品科技,2019,44(2):270-273. DOI:10.13684/j.cnki.spkj.2019.02.046
WANG X J, WANG K F, YAN Y J, et al. Enzymatic characteristics of β-glucosidase in hydrolysis of anthocyanin in wild peach fruit wine. Food Science and Technology, 2019,44(2):270-273. (in Chinese with English abstract)
doi: 10.13684/j.cnki.spkj.2019.02.046
36 MORATA A, GONZáLEZ C, SUáREZ-LEPE J A. Formation of vinylphenolic pyranoanthocyanins by selected yeasts fermenting red grape musts supplemented with hydroxycinnamic acids. International Journal of Food Microbiology, 2007,116(1):144-152. DOI:10.1016/j.ijfoodmicro.2006.12.032
doi: 10.1016/j.ijfoodmicro.2006.12.032
37 CZIBULYA Z, HORVáTH I, KOLLáR L, et al. Unexpected effect of potassium ions on the copigmentation in red wines. Food Research International, 2012,45(1):272-276. DOI:10.1016/j.foodres.2011.10.040
doi: 10
38 ZHANG Z W, YU Q, LI J W, et al. Effect of package oxygen on color, color-related compounds, and volatile composition of Chinese bayberry wine after bottling. LWT-Food Science and Technology, 2020,128:109430. DOI:10.1016/j.lwt.2020.109430
doi: 10.1016/j.lwt.2020.109430
39 GAMBUTI A, PICARIELLO L, RINALDI A, et al. Impact of 5-year bottle aging under controlled oxygen exposure on sulfur dioxide and phenolic composition of tannin-rich red wines. OENO One, 2020,54(3):623-636. DOI:10.20870/oeno-one.2020.54.3.3527
doi: 10.20870/oeno-one.2020.54.3.3527
40 ONTA?óN I, SáNCHEZ D, SáEZ V, et al. Liquid chromatography-mass spectrometry-based metabolomics for understanding the compositional changes induced by oxidative or anoxic storage of red wines. Journal of Agricultural and Food Chemistry, 2020,68(47):13367-13379. DOI:10.1021/acs.jafc.0c04118
doi: 10.1021/acs.jafc.0c04118
41 SáNCHEZ-GóMEZ R, ALAMO-SANZA M DEL, MARTíNEZ-MARTíNEZ V, et al. Study of the role of oxygen in the evolution of red wine colour under different ageing conditions in barrels and bottles. Food Chemistry, 2020,328:127040. DOI:10.1016/j.foodchem.2020.127040
doi: 10.1016/j.foodchem.2020.127040
42 STáVEK J, PAPOUSKOVA B, BALIK J, et al. Effect of storage conditions on various parameters of colour and the anthocyanin profile of rosé wines. International Journal of Food Properties, 2012,15(5):1133-1147. DOI:10.1080/10942912.2010.511751
doi: 10.1080/1094
43 IFIE I, ABRANKó L, VILLA-RODRIGUEZ J A, et al. The effect of ageing temperature on the physicochemical properties, phytochemical profile and α-glucosidase inhibition of Hibiscus sabdariffa (roselle) wine. Food Chemistry, 2018,267:263-270. DOI:10.1016/j.foodchem.2017.05.044
doi: 10.1016/j.foodchem.2017.05.044
44 LAN H J, LI S, YANG J, et al. Effects of light exposure on chemical and sensory properties of storing Meili Rose wine in colored bottles. Food Chemistry, 2021,345:128854. DOI:10.1016/j.foodchem.2020.128854
doi: 10.1016/j.foodchem.2020.128854
45 LIU Y, ZHANG X K, SHI Y, et al. Reaction kinetics of the acetaldehyde-mediated condensation between (-)-epicatechin and anthocyanins and their effects on the color in model wine solutions. Food Chemistry, 2019,283:315-323. DOI:10.1016/j.foodchem.2018.12.135
doi: 10
46 李亚辉,马艳弘,张宏志,等.草莓发酵酒澄清稳定处理技术.食品与生物技术学报,2016,35(8):864-870. DOI:10.3969/j.issn.1673-1689.2016.08.012
LI Y H, MA Y H, ZHANG H Z, et al. Study on the technology for clarification and stabilization of strawberry wine. Journal of Food Science and Biotechnology, 2016,35(8):864-870. (in Chinese with English abstract)
doi: 10.3969/j.issn.1673-1689.2016.08.012
47 TENG B, HAYASAKA Y, SMITH P A, et al. Precipitation of tannin-anthocyanin derivatives in wine is influenced by acetaldehyde concentration and tannin molecular mass with implications for the development of nonbleachable pigments. Journal of Agricultural and Food Chemistry, 2021,69(16):4804-4815. DOI:10.1021/acs.jafc.1c00396
doi: 10.1021/acs.jafc.1c00396
48 SOMMER S, WEBER F, HARBERTSON J F. Polyphenol-protein-polysaccharide interactions in the presence of carboxymethyl cellulose (CMC) in wine-like model systems. Journal of Agricultural and Food Chemistry, 2019,67(26):7428-7434. DOI:10.1021/acs.jafc.9b00450
doi: 10.1021/acs.jafc.9b00450
49 LIU S X, LIU E, ZHU B Q, et al. Impact of maceration time on colour-related phenolics, sensory characteristics and volatile composition of mulberry wine. Journal of the Institute of Brewing, 2018,124(1):45-56. DOI:10.1002/jib.476
doi: 10.1002/jib.476
50 GONZáLEZ-ARENZANA L, SANTAMARíA R, ESCRIBANO-VIANA R, et al. Influence of the carbonic maceration winemaking method on the physicochemical, colour, aromatic and microbiological features of tempranillo red wines. Food Chemistry, 2020,319:126569. DOI:10.1016/j.foodchem.2020.126569
doi: 10.1016/j.foodchem.2020.126569
51 曲一鸣,姚瑶,张亚飞,等.冷浸渍及单宁处理提升赤霞珠葡萄酒的品质.现代食品科技,2020,36(4):244-251. DOI:10.13982/j.mfst.1673-9078.2020.4.032
QU Y M, YAO Y, ZHANG Y F, et al. Quality improvement of cabernet Sauvignon wine treated by cold maceration and tannin. Modern Food Science and Technology, 2020,36(4):244-251. (in Chinese with English abstract)
doi: 10.13982/j.mfst.1673-9078.2020.4.032
52 张嘉璇,刘汝薇,商浥,等.原料冷冻处理对‘黑比诺’葡萄酒品质的影响.中外葡萄与葡萄酒,2021(1):14-18. DOI:10.13414/j.cnki.zwpp.2021.01.003
ZHANG J X, LIU R W, SHANG S, et al. Effect of raw material freezing treatment on the quality of ‘Pinot Noir’ wine. Sino-Overseas Grapevine & Wine, 2021(1):14-18. (in Chinese with English abstract)
doi: 10.13414/j.cnki.zwpp.2021.01.003
53 吉俊臣.蓝莓果酒快速陈酿及花青素护色研究.成都:西华大学,2020:19-34. DOI:10.1002/hyp.v34.19
JI J C. The research on rapid aging of blueberry wine and color protection of anthocyanins. Chengdu: Xihua University, 2020:19-34. (in Chinese with English abstract)
doi: 10.1002/hyp.v34.19
54 PéREZ-PORRAS P, BAUTISTA-ORTíN A B, JURADO R, et al. Using high-power ultrasounds in red winemaking: effect of operating conditions on wine physico-chemical and chromatic characteristics. Food Science & Technology, 2021,138:110645. DOI:10.1016/j.lwt.2020.110645
doi: 10.1016/j.lwt.2020.110645
55 LEONG S Y, TREADWELL M, LIU T, et al. Influence of pulsed electric fields processing at high-intensity electric field strength on the relationship between anthocyanins composition and colour intensity of Merlot (Vitis vinifera L.) musts during cold maceration. Innovative Food Science & Emerging Technologies, 2020,59:102243. DOI:10.1016/j.ifset.2019.102243
doi: 10.1016/j.ifset.2019.102243
56 COMUZZO P, VOCE S, GRAZIOLI C, et al. Pulsed electric field processing of red grapes (cv. Rondinella): modifications of phenolic fraction and effects on wine evolution. Foods, 2020,9(4):414. DOI:10.3390/foods9040414
doi: 10.3390/foods9040414
57 GHANEM C, TAILLANDIER P, RIZK M, et al. Analysis of the impact of fining agents types, oenological tannins and mannoproteins and their concentrations on the phenolic composition of red wine. LWT-Food Science and Technology, 2017,83:101-109. DOI:10.1016/j.lwt.2017.05.009
doi: 10.1016/j.lwt.2017.05.009
58 ZHU Y Y, CHEN H J, LOU L Y, et al. Copigmentation effect of three phenolic acids on color and thermal stability of Chinese bayberry anthocyanins. Food Science & Nutrition, 2020,8(7):3234-3242. DOI:10.1002/fsn3.1583
doi: 10.1002/fsn3.1583
59 FAN L L, WANG Y, XIE P J, et al. Copigmentation effects of phenolics on color enhancement and stability of blackberry wine residue anthocyanins: chromaticity, kinetics and structural simulation. Food Chemistry, 2019,275:299-308. DOI:10.1016/j.foodchem.2018.09.103
doi: 10.1016/j.foodchem.2018.09.103
60 ZHANG B, HE F, ZHOU P P, et al. Copigmentation between malvidin-3-O-glucoside and hydroxycinnamic acids in red wine model solutions: investigations with experimental and theoretical methods. Food Research International, 2015,78:313-320. DOI:10.1016/j.foodres.2015.09.026
doi: 10.1016/j.foodres.2015.09.026
61 LIU S X, LI S Y, LIN G, et al. Anthocyanin copigmentation and color attributes of bog bilberry syrup wine during bottle aging: effect of tannic acid and gallic acid extracted from Chinese gallnut. Journal of Food Processing and Preservation, 2019,43(8):e14041. DOI:10.1111/jfpp.14041
doi: 10.1111/jfpp.14041
62 李永强,杨士花,高斌,等.黄酮对杨梅花色苷的辅色作用.食品科学,2011,32(13):37-39.
LI Y Q, YANG S H, GAO B, et al. Co-pigmentation effect and color stability of flavonoids on red dayberry (Myrica rubra Sieb. et Zucc) anthocyanins. Food Science, 2011,32(13):37-39. (in Chinese with English abstract)
63 KOH J, XU Z M, WICKER L. Binding kinetics of blueberry pectin-anthocyanins and stabilization by non-covalent interactions. Food Hydrocolloids, 2020,99:105354. DOI:10.1016/j.foodhyd.2019.105354
doi: 10
64 FERNANDES A, RAPOSO F, EVTUGUIN D V, et al. Grape pectic polysaccharides stabilization of anthocyanins red colour: mechanistic insights. Carbohydrate Polymers, 2021,255:117432. DOI:10.1016/j.carbpol.2020.117432
doi: 10.1016/j.carbpol.2020.117432
65 KOPJAR M, PILI?OTA V. Prevention of thermal degradation of anthocyanins in blackberry juice with addition of different sugars. CyTA: Journal of Food, 2011,9(3):237-242. DOI:10.1080/19476337.2010.522735
doi: 10
[1] 洪敏,贺明阳,王日葵,周炼,王晶,冯雨. 塔罗科血橙室温贮藏期间花色苷和糖酸积累变化及相关代谢基因表达特征[J]. 浙江大学学报(农业与生命科学版), 2021, 47(5): 589-597.
[2] 莫远亮,王郁石,王继文. 天府肉鹅母系不同阶段颗粒细胞内参基因的选择[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3): 376-384.
[3] 曹玉杰, 吴兴富, 肖炳光, 徐海明. 清香型产区烤烟品种经济性状环境稳定性[J]. 浙江大学学报(农业与生命科学版), 2016, 42(3): 340-349.
[4] 庄远红,刘静娜,黄家福,林娇芬,潘裕添. 食用菌壳聚糖卡波姆复合凝胶的稳定性及其抑菌效果[J]. 浙江大学学报(农业与生命科学版), 2015, 41(2): 147-152.
[5] 章明奎, 顾国平, 王阳. 生物质炭在土壤中的降解特征[J]. 浙江大学学报(农业与生命科学版), 2012, 38(3): 329-335.
[6] 吴敬超,欧阳五庆,芮弦,刘梅雪,宋冰,兰莹. 乙酰甲喹微乳的制备及其体外透皮释药研究[J]. 浙江大学学报(农业与生命科学版), 2012, 38(2): 147-152.
[7] 王丽平 郑顺安 章明奎. 重金属污染对土壤颗粒态有机质和添加植物材料矿化的影响[J]. 浙江大学学报(农业与生命科学版), 2008, 34(3): 303-308.
[8] 张秀艳 何国庆 . 微生物源β-葡聚糖酶的稳定性研究[J]. 浙江大学学报(农业与生命科学版), 2007, 33(4): 387-391.
[9] 吕英华 苏平 那宇等. 桑椹色素体外抗氧化能力研究[J]. 浙江大学学报(农业与生命科学版), 2007, 33(1): 102-107.
[10] 陈健初  叶兴乾  席玙芳. 抗坏血酸对杨梅花色苷色素稳定性的影响[J]. 浙江大学学报(农业与生命科学版), 2005, 31(3): 298-300.
[11] 郑晓萍  卢升高. 富铁土团聚体稳定性的表征及其物理学机制[J]. 浙江大学学报(农业与生命科学版), 2005, 31(3): 305-310.
[12] 龚乐春  韦新良  胡秉民. 区域景观结构动态变化的趋势分析及其应用研究 [J]. 浙江大学学报(农业与生命科学版), 2005, 31(2): 211-214.
[13] 蒋益虹  沈益民. 人工神经网络用于红曲杨梅果酒生产工艺的优化 [J]. 浙江大学学报(农业与生命科学版), 2003, 29(3): 275-279.
[14] 孙红祥  林锋强  潘杭君. 温和气单胞菌Z-1株培养特性、免疫原性和毒力的研究[J]. 浙江大学学报(农业与生命科学版), 2002, 28(5): 569-572.
[15] 蒋益虹  沈建福. 糖化工艺在杨梅果酒生产中的应用研究[J]. 浙江大学学报(农业与生命科学版), 2002, 28(4): 449-452.