Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2015, Vol. 16 Issue (4): 295-301    DOI: 10.1631/jzus.A1200260
Civil Engineering and Mechanics     
Pullout capacity of small ground anchor: a least square support vector machine approach
Pijush Samui, Dookie Kim, Bhairevi G. Aiyer
Centre for Disaster Mitigation and Management, VIT University, Vellore-632014, Tamilnadu, India; Department of Civil Engineering, Kunsan National University, Kunsan, Jeonbuk, South Korea; School of Mechanical and Building Science, VIT University, Vellore-632014, Tamilnadu, India
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  This study employs the least square support vector machine (LSSVM) for the prediction of pullout capacity of small ground anchor. LSSVM is firmly based on the theory of statistical learning and uses regression technique. In LSSVM, Vapnik and Lerner (1963)’s ε-insensitive loss function was replaced by a cost function which corresponded to a form of ridge regression. The input parameters of LSSVM were equivalent anchor diameter, anchor embedment depth, average cone tip resistance, average cone sleeve friction, and installation technique. Using 83 out the available 119 in-situ test datasets, an LSSVM regression model was developed. The goodness of the model was tested using the remaining 36 data points. The developed LSSVM also gave an error bar of predicted data. A sensitivity analysis was conducted to determine the effect of each input parameter. The results were compared with the artificial neural network (ANN) model. Overall, LSSVM was shown to perform well.

Key wordsArtificial neural network (ANN)      Least square support vector machine (LSSVM)      Error bar      Ground anchor      Pullout capacity      In-situ test      Sensitivity analysis     
Received: 10 October 2012      Published: 03 April 2015
CLC:  TU74  
Cite this article:

Pijush Samui, Dookie Kim, Bhairevi G. Aiyer. Pullout capacity of small ground anchor: a least square support vector machine approach. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(4): 295-301.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1200260     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2015/V16/I4/295

[1] Hossein Rezaei, Ramli Nazir, Ehsan Momeni. Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(4): 273-285.
[2] Cheng-ming Lan , Hui Li, Jun-Yi Peng , Dong-Bai Sun . A structural reliability-based sensitivity analysis method using particles swarm optimization: relative convergence rate[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(12): 961-973.
[3] Philipp Ziegler, Sandro Wartzack. A statistical method to identify main contributing tolerances in assemblability studies based on convex hull techniques[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(5): 361-370.
[4] Bing Xu, Shao-gan Ye, Jun-hui Zhang. Effects of index angle on flow ripple of a tandem axial piston pump[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(5): 404-417.
[5] Xiang Hu, Li Xie, Chuang Mi, Dian-hai Yang. Calibration and validation of an activated sludge model for a pilot-scale anoxic/anaerobic/aerobic/post-anoxic process[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(9): 743-752.
[6] Arturo Garcia-Perez, Juan P. Amezquita-Sanchez, Aurelio Dominguez-Gonzalez, Ramin Sedaghati, Roque Osornio-Rios, Rene J. Romero-Troncoso. Fused empirical mode decomposition and wavelets for locating combined damage in a truss-type structure through vibration analysis[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(9): 615-630.
[7] Wei Lu, Yan-yong Xiang. Experiments and sensitivity analyses for heat transfer in a meter-scale regularly fractured granite model with water flow[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(12): 958-968.
[8] Mohammad Khajehzadeh, Mohd Raihan Taha, Ahmed El-Shafie, Mahdiyeh Eslami. Modified particle swarm optimization for optimum design of spread footing and retaining wall[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(6): 415-427.
[9] Hong-li QI, Hui ZHAO, Wei-wen LIU, Hai-bo ZHANG. Parameters optimization and nonlinearity analysis of grating eddy current displacement sensor using neural network and genetic algorithm[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(8): 1205-1212.
[10] Wei FAN, Wan-cheng YUAN, Qi-wu FAN. Calculation method of ship collision force on bridge using artificial neural network[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(5): 614-623.
[11] Okan KARAHAN, Harun TANYILDIZI, Cengiz D. ATIS. An artificial neural network approach for prediction of long-term strength properties of steel fiber reinforced concrete containing fly ash[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(11): 1514-1523.
[12] Qing GAO, Qin-he ZHANG, Shu-peng SU, Jian-hua ZHANG. Parameter optimization model in electrical discharge machining process[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(1): 104-108.
[13] YANG Xiao-hua, HUANG Jing-feng, WANG Jian-wen, WANG Xiu-zhen, LIU Zhan-yu. Estimation of vegetation biophysical parameters by remote sensing using radial basis function neural network[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(6): 883-895.
[14] WANG Rui-min, CAO Guang-yi, ZHU Xin-jian. New hybrid model of proton exchange membrane fuel cell[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(5): 741-747.
[15] GAO Bo-qing, WENG En-hao. Sensitivity analyses of cables to suspen-dome structural system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2004, 5( 9): 5-.