Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2008, Vol. 9 Issue (1): 104-108    DOI: 10.1631/jzus.A071242
Civil and Mechanical Engineering     
Parameter optimization model in electrical discharge machining process
Qing GAO, Qin-he ZHANG, Shu-peng SU, Jian-hua ZHANG
School of Mechanical Engineering, Shandong University, Jinan 250061, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Electrical discharge machining (EDM) process, at present is still an experience process, wherein selected parameters are often far from the optimum, and at the same time selecting optimization parameters is costly and time consuming. In this paper, artificial neural network (ANN) and genetic algorithm (GA) are used together to establish the parameter optimization model. An ANN model which adapts Levenberg-Marquardt algorithm has been set up to represent the relationship between material removal rate (MRR) and input parameters, and GA is used to optimize parameters, so that optimization results are obtained. The model is shown to be effective, and MRR is improved using optimized machining parameters.

Key wordsElectrical discharge machining (EDM)      Genetic algorithm (GA)      Artificial neural network (ANN)      Levenberg-Marquardt algorithm     
Received: 12 March 2007      Published: 10 November 2007
CLC:  TG5  
  TP2  
Cite this article:

Qing GAO, Qin-he ZHANG, Shu-peng SU, Jian-hua ZHANG. Parameter optimization model in electrical discharge machining process. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(1): 104-108.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A071242     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2008/V9/I1/104

[1] Hao Zheng, Yi-xiong Feng, Jian-rong Tan, Zhi-feng Zhang, Zi-xian Zhang. An integrated cognitive computing approach for systematic conceptual design[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(4): 286-294.
[2] Hossein Rezaei, Ramli Nazir, Ehsan Momeni. Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(4): 273-285.
[3] Jin Cheng, Ming-yang Tang, Zhen-yu Liu, Jian-rong Tan. Direct reliability-based design optimization of uncertain structures with interval parameters[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(11): 841-854.
[4] Zhi-feng Zhang, Yi-xiong Feng, Jian-rong Tan, Wei-qiang Jia, Guo-dong Yi. A novel approach for parallel disassembly design based on a hybrid fuzzy-time model[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(9): 724-736.
[5] Pijush Samui, Dookie Kim, Bhairevi G. Aiyer. Pullout capacity of small ground anchor: a least square support vector machine approach[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(4): 295-301.
[6] Arturo Garcia-Perez, Juan P. Amezquita-Sanchez, Aurelio Dominguez-Gonzalez, Ramin Sedaghati, Roque Osornio-Rios, Rene J. Romero-Troncoso. Fused empirical mode decomposition and wavelets for locating combined damage in a truss-type structure through vibration analysis[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(9): 615-630.
[7] Hong-li QI, Hui ZHAO, Wei-wen LIU, Hai-bo ZHANG. Parameters optimization and nonlinearity analysis of grating eddy current displacement sensor using neural network and genetic algorithm[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(8): 1205-1212.
[8] Shervin VAKILI, Sied Mehdi FAKHRAIE, Siamak MOHAMMADI, Ali AHMADI. Low-cost fault tolerance in evolvable multiprocessor systems: a graceful degradation approach[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(6): 922-926.
[9] Mohsen GITIZADEH, Mohsen KALANTAR. Optimum allocation of FACTS devices in Fars Regional Electric Network using genetic algorithm based goal attainment[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(4): 478-487.
[10] Peng-fei LIU, Ping XU, Shu-xin HAN, Jin-yang ZHENG. Optimal design of pressure vessel using an improved genetic algorithm[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(9): 1264-1269.
[11] Li ZHU, Zhi-shu LI, Liang-yin CHEN, Yan-hong CHENG. Two-stage evolutionary algorithm for dynamic multicast routing in mesh network[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(6): 791-798.
[12] Wei FAN, Wan-cheng YUAN, Qi-wu FAN. Calculation method of ship collision force on bridge using artificial neural network[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(5): 614-623.
[13] Arash SAYYAH, Mitra AFLAKI, Alireza REZAZADEH. Optimization of total harmonic current distortion and torque pulsation reduction in high-power induction motors using genetic algorithms[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(12): 1741-1752.
[14] Okan KARAHAN, Harun TANYILDIZI, Cengiz D. ATIS. An artificial neural network approach for prediction of long-term strength properties of steel fiber reinforced concrete containing fly ash[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(11): 1514-1523.
[15] WU Xiao-juan, ZHU Xin-jian, CAO Guang-yi, TU Heng-yong. Nonlinear modelling of a SOFC stack by improved neural networks identification[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(9): 1505-1509.