Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2007, Vol. 8 Issue (9): 1505-1509    DOI: 10.1631/jzus.2007.A1505
Environmental & Energy Engineering     
Nonlinear modelling of a SOFC stack by improved neural networks identification
WU Xiao-juan, ZHU Xin-jian, CAO Guang-yi, TU Heng-yong
Institute of Fuel Cell, Shanghai Jiao Tong University, Shanghai 200030, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  The solid oxide fuel cell (SOFC) is a nonlinear system that is hard to model by conventional methods. So far, most existing models are based on conversion laws, which are too complicated to be applied to design a control system. To facilitate a valid control strategy design, this paper tries to avoid the internal complexities and presents a modelling study of SOFC performance by using a radial basis function (RBF) neural network based on a genetic algorithm (GA). During the process of modelling, the GA aims to optimize the parameters of RBF neural networks and the optimum values are regarded as the initial values of the RBF neural network parameters. The validity and accuracy of modelling are tested by simulations, whose results reveal that it is feasible to establish the model of SOFC stack by using RBF neural networks identification based on the GA. Furthermore, it is possible to design an online controller of a SOFC stack based on this GA-RBF neural network identification model.

Key wordsSolid oxide fuel cells (SOFCs)      Radial basis function (RBF)      Neural networks      Genetic algorithm (GA)     
Received: 22 December 2006     
CLC:  TK01  
Cite this article:

WU Xiao-juan, ZHU Xin-jian, CAO Guang-yi, TU Heng-yong. Nonlinear modelling of a SOFC stack by improved neural networks identification. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(9): 1505-1509.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2007.A1505     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2007/V8/I9/1505

[1] Hao Zheng, Yi-xiong Feng, Jian-rong Tan, Zhi-feng Zhang, Zi-xian Zhang. An integrated cognitive computing approach for systematic conceptual design[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(4): 286-294.
[2] Jin Cheng, Ming-yang Tang, Zhen-yu Liu, Jian-rong Tan. Direct reliability-based design optimization of uncertain structures with interval parameters[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(11): 841-854.
[3] Zhi-feng Zhang, Yi-xiong Feng, Jian-rong Tan, Wei-qiang Jia, Guo-dong Yi. A novel approach for parallel disassembly design based on a hybrid fuzzy-time model[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(9): 724-736.
[4] Jin Cheng, Gui-fang Duan, Zhen-yu Liu, Xiao-gang Li, Yi-xiong Feng, Xiao-hai Chen. Interval multiobjective optimization of structures based on radial basis function, interval analysis, and NSGA-II[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(10): 774-788.
[5] José D. Martínez-Morales, Elvia R. Palacios-Hernández, Gerardo A. Velázquez-Carrillo. Modeling and multi-objective optimization of a gasoline engine using neural networks and evolutionary algorithms[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(9): 657-670.
[6] Yi-qun DENG, Pei-ming WANG. Predicting the shrinkage of thermal insulation mortar by probabilistic neural networks[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(3): 212-222.
[7] Abdelhakim Deboucha, Zahari Taha. Identification and control of a small-scale helicopter[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(12): 978-985.
[8] Hong-li QI, Hui ZHAO, Wei-wen LIU, Hai-bo ZHANG. Parameters optimization and nonlinearity analysis of grating eddy current displacement sensor using neural network and genetic algorithm[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(8): 1205-1212.
[9] Shervin VAKILI, Sied Mehdi FAKHRAIE, Siamak MOHAMMADI, Ali AHMADI. Low-cost fault tolerance in evolvable multiprocessor systems: a graceful degradation approach[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(6): 922-926.
[10] Mohsen GITIZADEH, Mohsen KALANTAR. Optimum allocation of FACTS devices in Fars Regional Electric Network using genetic algorithm based goal attainment[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(4): 478-487.
[11] Kasthurirangan GOPALAKRISHNAN. Evaluation of accelerated deterioration in NAPTF flexible test pavements[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(9): 1157-1166.
[12] Peng-fei LIU, Ping XU, Shu-xin HAN, Jin-yang ZHENG. Optimal design of pressure vessel using an improved genetic algorithm[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(9): 1264-1269.
[13] Li ZHU, Zhi-shu LI, Liang-yin CHEN, Yan-hong CHENG. Two-stage evolutionary algorithm for dynamic multicast routing in mesh network[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(6): 791-798.
[14] Arash SAYYAH, Mitra AFLAKI, Alireza REZAZADEH. Optimization of total harmonic current distortion and torque pulsation reduction in high-power induction motors using genetic algorithms[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(12): 1741-1752.
[15] Qing GAO, Qin-he ZHANG, Shu-peng SU, Jian-hua ZHANG. Parameter optimization model in electrical discharge machining process[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(1): 104-108.