Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2009, Vol. 10 Issue (4): 478-487    DOI: 10.1631/jzus.A0820130
Electrical Engineering     
Optimum allocation of FACTS devices in Fars Regional Electric Network using genetic algorithm based goal attainment
Mohsen GITIZADEH, Mohsen KALANTAR
Center of Excellence for Power System Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Tehran 16844, Iran
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  This paper presents a novel approach to find optimum locations and capacity of flexible alternating current transmission system (FACTS) devices in a power system using a multi-objective optimization function. Thyristor controlled series compensators (TCSCs) and static var compensators (SVCs) are the utilized FACTS devices. Our objectives are active power loss reduction, newly introduced FACTS devices cost reduction, voltage deviation reduction, and increase on the robustness of the security margin against voltage collapse. The operational and controlling constraints, as well as load constraints, were considered in the optimum allocation. A goal attainment method based on the genetic algorithm (GA) was used to approach the global optimum. The estimated annual load profile was utilized in a sequential quadratic programming (SQP) optimization sub-problem to the optimum siting and sizing of FACTS devices. Fars Regional Electric Network was selected as a practical system to validate the performance and effectiveness of the proposed method. The entire investment of the FACTS devices was paid off and an additional 2.4% savings was made. The cost reduction of peak point power generation implies that power plant expansion can be postponed.

Key wordsFlexible alternating current transmission system (FACTS) devices allocation      Multi-objective optimization      Genetic algorithm (GA)      Goal attainment     
Received: 25 February 2008     
CLC:  TM73  
Cite this article:

Mohsen GITIZADEH, Mohsen KALANTAR. Optimum allocation of FACTS devices in Fars Regional Electric Network using genetic algorithm based goal attainment. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(4): 478-487.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A0820130     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2009/V10/I4/478

[1] Peng Guo, Jun-hong Zhang. Numerical model and multi-objective optimization analysis of vehicle vibration[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(5): 393-412.
[2] Hao Zheng, Yi-xiong Feng, Jian-rong Tan, Zhi-feng Zhang, Zi-xian Zhang. An integrated cognitive computing approach for systematic conceptual design[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(4): 286-294.
[3] Jin Cheng, Ming-yang Tang, Zhen-yu Liu, Jian-rong Tan. Direct reliability-based design optimization of uncertain structures with interval parameters[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(11): 841-854.
[4] Zhi-feng Zhang, Yi-xiong Feng, Jian-rong Tan, Wei-qiang Jia, Guo-dong Yi. A novel approach for parallel disassembly design based on a hybrid fuzzy-time model[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(9): 724-736.
[5] Wei Wei, Ang Liu, Stephen C. Y. Lu, Thorsten Wuest. A multi-principle module identification method for product platform design[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(1): 1-10.
[6] Yi-cong Gao, Yi-xiong Feng, Jian-rong Tan. Multi-principle preventive maintenance: a design-oriented scheduling study for mechanical systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(11): 862-872.
[7] José D. Martínez-Morales, Elvia R. Palacios-Hernández, Gerardo A. Velázquez-Carrillo. Modeling and multi-objective optimization of a gasoline engine using neural networks and evolutionary algorithms[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(9): 657-670.
[8] Meng-ge Yu, Ji-ye Zhang, Wei-hua Zhang. Multi-objective optimization design method of the high-speed train head[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(9): 631-641.
[9] Francisco J. Martinez-Martin, Fernando Gonzalez-Vidosa, Antonio Hospitaler, Víctor Yepes. Multi-objective optimization design of bridge piers with hybrid heuristic algorithms[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(6): 420-432.
[10] Ning-yun Lu, Gui-xia Gong, Yi Yang, Jian-hua Lu. Multi-objective process parameter optimization for energy saving in injection molding process[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(5): 382-394.
[11] Hong-li QI, Hui ZHAO, Wei-wen LIU, Hai-bo ZHANG. Parameters optimization and nonlinearity analysis of grating eddy current displacement sensor using neural network and genetic algorithm[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(8): 1205-1212.
[12] Shervin VAKILI, Sied Mehdi FAKHRAIE, Siamak MOHAMMADI, Ali AHMADI. Low-cost fault tolerance in evolvable multiprocessor systems: a graceful degradation approach[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(6): 922-926.
[13] Peng-fei LIU, Ping XU, Shu-xin HAN, Jin-yang ZHENG. Optimal design of pressure vessel using an improved genetic algorithm[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(9): 1264-1269.
[14] Li ZHU, Zhi-shu LI, Liang-yin CHEN, Yan-hong CHENG. Two-stage evolutionary algorithm for dynamic multicast routing in mesh network[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(6): 791-798.
[15] Jun-hai SHI, Zhi-dan ZHONG, Xin-jian ZHU, Guang-yi CAO. Robust design and optimization for autonomous PV-wind hybrid power systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(3): 401-409.