Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2013, Vol. 14 Issue (9): 615-630    DOI: 10.1631/jzus.A1300030
Mechanics and Mechanical Engineering     
Fused empirical mode decomposition and wavelets for locating combined damage in a truss-type structure through vibration analysis
Arturo Garcia-Perez, Juan P. Amezquita-Sanchez, Aurelio Dominguez-Gonzalez, Ramin Sedaghati, Roque Osornio-Rios, Rene J. Romero-Troncoso
HSPdigital–CA Telematica-Procesamiento Digital de Se?ales, DICIS, Universidad de Guanajuato, Carr. Salamanca-Valle km 3.5+1.8, Palo Blanco, 36885 Salamanca, Gto., Mexico; HSPdigital, CA Mecatronica, Facultad de Ingeniería, Campus San Juan del Río, Universidad Autonoma de Queretaro, Moctezuma 249, Col. San Cayetano, 76807 San Juan del Río, Qro., Mexico; Department of Mechanical and Industrial Engineering, Concordia University, 1455 de Maisonneuve Boulevard, West Montreal, QC, H3G 1M8, Canada
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Structural health monitoring (SHM) is a relevant topic for civil systems and involves the monitoring, data processing and interpretation to evaluate the condition of a structure, in order to detect damage. In real structures, two or more sites or types of damage can be present at the same time. It has been shown that one kind of damaged condition can interfere with the detection of another kind of damage, leading to an incorrect assessment about the structure condition. Identifying combined damage on structures still represents a challenge for condition monitoring, because the reliable identification of a combined damaged condition is a difficult task. Thus, this work presents a fusion of methodologies, where a single wavelet-packet and the empirical mode decomposition (EMD) method are combined with artificial neural networks (ANNs) for the automated and online identification-location of single or multiple-combined damage in a scaled model of a five-bay truss-type structure. Results showed that the proposed methodology is very efficient and reliable for identifying and locating the three kinds of damage, as well as their combinations. Therefore, this methodology could be applied to detection-location of damage in real truss-type structures, which would help to improve the characteristics and life span of real structures.

Key wordsTruss structure      Vibration      Spectral analysis      Wavelet packet transform      Empirical mode decomposition      Artificial neural network (ANN)     
Received: 19 January 2013      Published: 02 June 2013
CLC:  O34  
Cite this article:

Arturo Garcia-Perez, Juan P. Amezquita-Sanchez, Aurelio Dominguez-Gonzalez, Ramin Sedaghati, Roque Osornio-Rios, Rene J. Romero-Troncoso. Fused empirical mode decomposition and wavelets for locating combined damage in a truss-type structure through vibration analysis. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(9): 615-630.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1300030     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2013/V14/I9/615

[1] Zhi Chao Ong, Hong Cheet Lim, Shin Yee Khoo, Zubaidah Ismail, Keen Kuan Kong, Abdul Ghaffar Abdul Rahman. Assessment of the phase synchronization effect in modal testing during operation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(2): 92-105.
[2] Yiu-yin Lee. Large amplitude free vibration of a flexible panel coupled with a leaking cavity[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(1): 75-82.
[3] Chong Li, Cun-yue Lu, Yi-xin Ma, Shi-yang Li, Wei-qing Huang. Design of an ultrasonic motor with multi-vibrators[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(9): 724-732.
[4] Zhi-long Huang, Xiao-ling Jin, Rong-hua Ruan, Wei-qiu Zhu. Typical dielectric elastomer structures: dynamics and application in structural vibration control[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(5): 335-352.
[5] Xiong-liang Yao, Dong Tang, Fu-zhen Pang, Shuo Li. Exact free vibration analysis of open circular cylindrical shells by the method of reverberation-ray matrix[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(4): 295-316.
[6] Hossein Rezaei, Ramli Nazir, Ehsan Momeni. Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(4): 273-285.
[7] Xiao-ping Ouyang, Xu Fang, Hua-yong Yang. An investigation into the swash plate vibration and pressure pulsation of piston pumps based on full fluid-structure interactions[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(3): 202-214.
[8] Yun-luo Yu, Wei Li, De-ren Sheng, Jian-hong Chen. A hybrid short-term load forecasting method based on improved ensemble empirical mode decomposition and back propagation neural network[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(2): 101-114.
[9] Wen-yang Duan, Li-min Huang, Yang Han, De-tai Huang. A hybrid EMD-AR model for nonlinear and non-stationary wave forecasting[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(2): 115-129.
[10] Zhen-ya Li, Kui-hua Wang, Wen-bing Wu, Chin Jian Leo. Vertical vibration of a large diameter pile embedded in inhomogeneous soil based on the Rayleigh-Love rod theory[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(12): 974-988.
[11] Yue Wu, Zhao-qing Chen, Xiao-ying Sun. Research on the wind-induced aero-elastic response of closed-type saddle-shaped tensioned membrane models[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(8): 656-668.
[12] Wen-yang Duan, Li-min Huang, Yang Han, Ya-hui Zhang, Shuo Huang. A hybrid AR-EMD-SVR model for the short-term prediction of nonlinear and non-stationary ship motion[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(7): 562-576.
[13] Pijush Samui, Dookie Kim, Bhairevi G. Aiyer. Pullout capacity of small ground anchor: a least square support vector machine approach[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(4): 295-301.
[14] Hong-yan Wang, Li-hua Tang, Yuan Guo, Xiao-biao Shan, Tao Xie. A 2DOF hybrid energy harvester based on combined piezoelectric and electromagnetic conversion mechanisms[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(9): 711-722.
[15] Xue-song Jin. Key problems faced in high-speed train operation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 936-945.