Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2017, Vol. 18 Issue (2): 92-105    DOI: 10.1631/jzus.A1600003
Articles     
Assessment of the phase synchronization effect in modal testing during operation
Zhi Chao Ong, Hong Cheet Lim, Shin Yee Khoo, Zubaidah Ismail, Keen Kuan Kong, Abdul Ghaffar Abdul Rahman
Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; Department of Civil Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; Faculty of Mechanical Engineering, University Malaysia Pahang, Pekan, Pahang Darul Makmur 26600, Malaysia
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  The impact-synchronous modal analysis (ISMA), which uses impact-synchronous time averaging (ISTA), allows modal testing to be performed during operation. ISTA is effective in filtering out the non-synchronous cyclic load component, its harmonics, and noises. However, it was found that at operating speeds that coincide with the natural modes, ISMA would require a high number of impacts to determine the dynamic characteristics of the system. This finding has subsequently reduced the effectiveness and practicality of ISMA. Preservation of signatures during ISTA depends on the consistency of their phase angles on every time block but not necessarily on their frequencies. Thus, the effect of phase angles with respect to impact is seen to be a very important parameter when performing ISMA on structures with dominant periodic responses due to cyclic load and ambient excitation. The responses from unaccounted forces that contain even the same frequency as that contained in the response due to impact are diminished with the least number of impacts when the phase of the periodic responses is not consistent with the impact signature for every impact applied. The assessment showed that a small number of averages are sufficient to eliminate the non-synchronous components with 98.48% improvement on simulation and 95.22% improvement on experimental modal testing when the phase angles with respect to impact are not consistent for every impact applied.

Key wordsExperimental modal analysis      Vibration      Impact-synchronous modal analysis (ISMA)      Impact-synchronous time averaging (ISTA)      Modal testing      Phase synchronization     
Received: 31 December 2015      Published: 24 January 2017
CLC:  O32  
Cite this article:

Zhi Chao Ong, Hong Cheet Lim, Shin Yee Khoo, Zubaidah Ismail, Keen Kuan Kong, Abdul Ghaffar Abdul Rahman. Assessment of the phase synchronization effect in modal testing during operation. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(2): 92-105.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1600003     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2017/V18/I2/92

[1] Yiu-yin Lee. Large amplitude free vibration of a flexible panel coupled with a leaking cavity[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(1): 75-82.
[2] Chong Li, Cun-yue Lu, Yi-xin Ma, Shi-yang Li, Wei-qing Huang. Design of an ultrasonic motor with multi-vibrators[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(9): 724-732.
[3] Zhi-long Huang, Xiao-ling Jin, Rong-hua Ruan, Wei-qiu Zhu. Typical dielectric elastomer structures: dynamics and application in structural vibration control[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(5): 335-352.
[4] Xiong-liang Yao, Dong Tang, Fu-zhen Pang, Shuo Li. Exact free vibration analysis of open circular cylindrical shells by the method of reverberation-ray matrix[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(4): 295-316.
[5] Xiao-ping Ouyang, Xu Fang, Hua-yong Yang. An investigation into the swash plate vibration and pressure pulsation of piston pumps based on full fluid-structure interactions[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(3): 202-214.
[6] Zhen-ya Li, Kui-hua Wang, Wen-bing Wu, Chin Jian Leo. Vertical vibration of a large diameter pile embedded in inhomogeneous soil based on the Rayleigh-Love rod theory[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(12): 974-988.
[7] Yue Wu, Zhao-qing Chen, Xiao-ying Sun. Research on the wind-induced aero-elastic response of closed-type saddle-shaped tensioned membrane models[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(8): 656-668.
[8] Hong-yan Wang, Li-hua Tang, Yuan Guo, Xiao-biao Shan, Tao Xie. A 2DOF hybrid energy harvester based on combined piezoelectric and electromagnetic conversion mechanisms[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(9): 711-722.
[9] Xue-song Jin. Key problems faced in high-speed train operation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 936-945.
[10] Hao Wang, Tian-you Tao, Huai-yu Cheng, Ai-qun Li. A simulation study on the optimal control of buffeting displacement for the Sutong Bridge with multiple tuned mass dampers[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(10): 798-812.
[11] Arturo Garcia-Perez, Juan P. Amezquita-Sanchez, Aurelio Dominguez-Gonzalez, Ramin Sedaghati, Roque Osornio-Rios, Rene J. Romero-Troncoso. Fused empirical mode decomposition and wavelets for locating combined damage in a truss-type structure through vibration analysis[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(9): 615-630.
[12] Zhao-dong Xu, Chen-hui Weng. Track-position and vibration control simulation for strut of the Stewart platform[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(4): 281-291.
[13] Ning Wang, Kui-hua Wang, Wen-bing Wu. Analytical model of vertical vibrations in piles for different tip boundary conditions: parametric study and applications[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(2): 79-93.
[14] Xiao-biao Shan, Shi-wei Guan, Zhang-shi Liu, Zhen-long Xu, Tao Xie. A new energy harvester using a piezoelectric and suspension electromagnetic mechanism[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(12): 890-897.
[15] Xue-cheng Bian, Wan-feng Jin, Hong-guang Jiang. Ground-borne vibrations due to dynamic loadings from moving trains in subway tunnels[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(11): 870-876.