Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2012, Vol. 13 Issue (12): 958-968    DOI: 10.1631/jzus.A1200153
Environmental Engineering     
Experiments and sensitivity analyses for heat transfer in a meter-scale regularly fractured granite model with water flow
Wei Lu, Yan-yong Xiang
School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Experiments of saturated water flow and heat transfer were conducted for a meter-scale model of regularly fractured granite. The fractured rock model (height 1502.5 mm, width 904 mm, and thickness 300 mm), embedded with two vertical and two horizontal fractures of pre-set apertures, was constructed using 18 pieces of intact granite. The granite was taken from a site currently being investigated for a high-level nuclear waste repository in China. The experiments involved different heat source temperatures and vertical water fluxes in the embedded fractures either open or filled with sand. A finite difference scheme and computer code for calculation of water flow and heat transfer in regularly fractured rocks was developed, verified against both the experimental data and calculations from the TOUGH2 code, and employed for parametric sensitivity analyses. The experiments revealed that, among other things, the temperature distribution was influenced by water flow in the fractures, especially the water flow in the vertical fracture adjacent to the heat source, and that the heat conduction between the neighboring rock blocks in the model with sand-filled fractures was enhanced by the sand, with larger range of influence of the heat source and longer time for approaching asymptotic steady-state than those of the model with open fractures. The temperatures from the experiments were in general slightly smaller than those from the numerical calculations, probably due to the fact that a certain amount of outward heat transfer at the model perimeter was unavoidable in the experiments. The parametric sensitivity analyses indicated that the temperature distribution was highly sensitive to water flow in the fractures, and the water temperature in the vertical fracture adjacent to the heat source was rather insensitive to water flow in other fractures.

Key wordsFractured granite      Water flow      Heat transfer      Physical modeling      Numerical calculation      Sensitivity analysis     
Received: 20 July 2012      Published: 29 November 2012
CLC:  X141  
Cite this article:

Wei Lu, Yan-yong Xiang. Experiments and sensitivity analyses for heat transfer in a meter-scale regularly fractured granite model with water flow. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(12): 958-968.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1200153     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2012/V13/I12/958

[1] Cheng-ming Lan , Hui Li, Jun-Yi Peng , Dong-Bai Sun . A structural reliability-based sensitivity analysis method using particles swarm optimization: relative convergence rate[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(12): 961-973.
[2] Philipp Ziegler, Sandro Wartzack. A statistical method to identify main contributing tolerances in assemblability studies based on convex hull techniques[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(5): 361-370.
[3] Bing Xu, Shao-gan Ye, Jun-hui Zhang. Effects of index angle on flow ripple of a tandem axial piston pump[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(5): 404-417.
[4] Jing-cheng Liu, Shu-you Zhang, Xin-yue Zhao, Guo-dong Yi, Zhi-yong Zhou. Influence of fin arrangement on fluid flow and heat transfer in the inlet of a plate-fin heat exchanger[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(4): 279-294.
[5] Pijush Samui, Dookie Kim, Bhairevi G. Aiyer. Pullout capacity of small ground anchor: a least square support vector machine approach[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(4): 295-301.
[6] Yong Zhang, Yan-yong Xiang. A semi-analytical method and its application for calculating the thermal stress and displacement of sparsely fractured rocks with water flow and heat transfer[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(11): 922-934.
[7] Ting-zhen Ming, Yan Ding, Jin-le Gui, Yong-xin Tao. Transient thermal behavior of a microchannel heat sink with multiple impinging jets[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(11): 894-909.
[8] Xiang Hu, Li Xie, Chuang Mi, Dian-hai Yang. Calibration and validation of an activated sludge model for a pilot-scale anoxic/anaerobic/aerobic/post-anoxic process[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(9): 743-752.
[9] Xue-jun Zhang, Ke-qing Zheng, Ling-shi Wang, Wei Wang, Min Jiang, Sheng-ying Zhao. Analysis of ice slurry production by direct contact heat transfer of air and water solution[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(8): 583-588.
[10] Ke Tang, Juan Yu, Tao Jin, Zhi-hua Gan. Influence of compression-expansion effect on oscillating-flow heat transfer in a finned heat exchanger[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(6): 427-434.
[11] Mohammad Mohsen Shahmardan, Mahmood Norouzi, Mohammad Hassan Kayhani, Amin Amiri Delouei. An exact analytical solution for convective heat transfer in rectangular ducts[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(10): 768-781.
[12] Mohammad Khajehzadeh, Mohd Raihan Taha, Ahmed El-Shafie, Mahdiyeh Eslami. Modified particle swarm optimization for optimum design of spread footing and retaining wall[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(6): 415-427.
[13] Jundika C. Kurnia, Agus P. Sasmito, Arun S. Mujumdar. Evaluation of the heat transfer performance of helical coils of non-circular tubes[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(1): 63-70.
[14] Tao JIN, Jian-ping HONG, Hao ZHENG, Ke TANG, Zhi-hua GAN. Measurement of boiling heat transfer coefficient in liquid nitrogen bath by inverse heat conduction method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(5): 691-696.
[15] Shui-xuan CHEN, Jun ZOU, Xin FU. Coupled models of heat transfer and phase transformation for the run-out table in hot rolling[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(7): 932-939.