Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2015, Vol. 16 Issue (11): 894-909    DOI: 10.1631/jzus.A1400313
Energy Engineering     
Transient thermal behavior of a microchannel heat sink with multiple impinging jets
Ting-zhen Ming, Yan Ding, Jin-le Gui, Yong-xin Tao
1School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China; 2Department of Mechanical and Energy Engineering, University of North Texas, Denton 76207, USA; 3School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; 4Department of Mechanical Engineering, University of Maryland, College Park 20742, USA
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  We performed a transient numerical investigation on a microchannel heat sink with multiple impinging jets (MHSMIJ) to explore the effects on the fluid flow and heat transfer characteristics of the MHSMIJ of an unsteady impinging jet and heat flux imposed upon the substrate surface by using a computational fluid dynamics method. The heat fluxes being imposed upon the substrate surface and the inlet velocities of the jet were all set as sinusoidal functions with different amplitudes and periods with time. The effects of the amplitudes and periods of the functions on the substrate properties were analyzed. Cooling performance was evaluated by calculating the periodic average surface heat transfer coefficient, average temperature uniformity, and temperature variation of the target surfaces over a period. The results indicated that the surface heat transfer coefficient and average temperature of the cooled surface oscillated with the periodic heat fluxes, accompanied by obvious phase lags. The phase lag has a significant dependence on the periods, but little dependence on the amplitudes. The material properties of the substrate have complex influences on the transient behavior of the MHSMIJ. The periodic heat flux and periodic jet velocity significantly affected the transient thermal performance of the MHSMIJ, but had less effect on its overall performance. Further, transient heat flux and jet velocity caused non-uniform and transient temperature distributions, which will cause thermal fatigue phenomenon, and thereby have effect on the longevity of the MHSMIJ.

Key wordsMicrochannel heat sink with impinging jets      Heat transfer      Sinusoidal heat flux      Sinusoidal inlet velocity      Phase lag     
Received: 15 October 2014      Published: 04 November 2015
CLC:  TK121  
Cite this article:

Ting-zhen Ming, Yan Ding, Jin-le Gui, Yong-xin Tao. Transient thermal behavior of a microchannel heat sink with multiple impinging jets. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(11): 894-909.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1400313     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2015/V16/I11/894

[1] Jing-cheng Liu, Shu-you Zhang, Xin-yue Zhao, Guo-dong Yi, Zhi-yong Zhou. Influence of fin arrangement on fluid flow and heat transfer in the inlet of a plate-fin heat exchanger[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(4): 279-294.
[2] Yong Zhang, Yan-yong Xiang. A semi-analytical method and its application for calculating the thermal stress and displacement of sparsely fractured rocks with water flow and heat transfer[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(11): 922-934.
[3] Xue-jun Zhang, Ke-qing Zheng, Ling-shi Wang, Wei Wang, Min Jiang, Sheng-ying Zhao. Analysis of ice slurry production by direct contact heat transfer of air and water solution[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(8): 583-588.
[4] Ke Tang, Juan Yu, Tao Jin, Zhi-hua Gan. Influence of compression-expansion effect on oscillating-flow heat transfer in a finned heat exchanger[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(6): 427-434.
[5] Wei Lu, Yan-yong Xiang. Experiments and sensitivity analyses for heat transfer in a meter-scale regularly fractured granite model with water flow[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(12): 958-968.
[6] Mohammad Mohsen Shahmardan, Mahmood Norouzi, Mohammad Hassan Kayhani, Amin Amiri Delouei. An exact analytical solution for convective heat transfer in rectangular ducts[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(10): 768-781.
[7] Jundika C. Kurnia, Agus P. Sasmito, Arun S. Mujumdar. Evaluation of the heat transfer performance of helical coils of non-circular tubes[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(1): 63-70.
[8] Tao JIN, Jian-ping HONG, Hao ZHENG, Ke TANG, Zhi-hua GAN. Measurement of boiling heat transfer coefficient in liquid nitrogen bath by inverse heat conduction method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(5): 691-696.
[9] Shui-xuan CHEN, Jun ZOU, Xin FU. Coupled models of heat transfer and phase transformation for the run-out table in hot rolling[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(7): 932-939.
[10] Rafael CORTELL. A numerical analysis to the non-linear fin problem[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(5): 648-653.
[11] Hua ZHU, Bo ZHUANG, Jin-jun TAN, Rong-hua HONG. Theoretical and experimental research on heat transfer performance of the semi-open heat pipe[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(3): 410-415.
[12] SAHOO Bikash, SHARMA H.G.. Existence and uniqueness theorem for flow and heat transfer of a non-Newtonian fluid over a stretching sheet[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(5): 766-771.
[13] NALLUSAMY N., SAMPATH S., VELRAJ R.. Study on performance of a packed bed latent heat thermal energy storage unit integrated with solar water heating system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(8 ): 17-.
[14] CHERALATHAN M., VELRAJ R., RENGANARAYANAN S.. Heat transfer and parametric studies of an encapsulated phase change material based cool thermal energy storage system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(11): 13-.
[15] HU Zhi-hua, YANG Yan-hua, ZHOU Fang-de. Study on the heat transfer of cross flow in vertical upward tubes[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6(10): 1128-1131.