Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2014, Vol. 15 Issue (8): 636-650    DOI: 10.1631/jzus.C1300370
    
Knowledge modeling based on interval-valued fuzzy rough set and similarity inference: prediction of welding distortion
Zhi-qiang Feng, Cun-gen Liu, Hu Huang
Maritime College, Qinzhou University, Qinzhou 535000, China; State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Knowledge-based modeling is a trend in complex system modeling technology. To extract the process knowledge from an information system, an approach of knowledge modeling based on interval-valued fuzzy rough set is presented in this paper, in which attribute reduction is a key to obtain the simplified knowledge model. Through defining dependency and inclusion functions, algorithms for attribute reduction and rule extraction are obtained. The approximation inference plays an important role in the development of the fuzzy system. To improve the inference mechanism, we provide a method of similarity-based inference in an interval-valued fuzzy environment. Combining the conventional compositional rule of inference with similarity based approximate reasoning, an inference result is deduced via rule translation, similarity matching, relation modification, and projection operation. This approach is applied to the problem of predicting welding distortion in marine structures, and the experimental results validate the effectiveness of the proposed methods of knowledge modeling and similarity-based inference.

Key wordsKnowledge modeling      Interval-valued fuzzy rough set      Similarity-based inference      Welding distortion prediction     
Received: 18 December 2013      Published: 06 August 2014
CLC:  TP18  
Cite this article:

Zhi-qiang Feng, Cun-gen Liu, Hu Huang. Knowledge modeling based on interval-valued fuzzy rough set and similarity inference: prediction of welding distortion. Front. Inform. Technol. Electron. Eng., 2014, 15(8): 636-650.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1300370     OR     http://www.zjujournals.com/xueshu/fitee/Y2014/V15/I8/636


基于区间值模糊粗糙集的知识建模及相似性推理:焊接变形预报

研究目的:知识获取和知识推理是智能系统开发中的两大环节。基于知识的非机理性建模方法已成为复杂过程建模的一种趋势。为解决建模过程中对经验知识的依赖问题,进一步完善推理机制,本文基于粗糙集和区间值模糊集理论,研究知识建模及近似推理方法,并将其应用于船体结构焊接变形预报。对建模与推理中的理论、方法和实际问题的研究有助于认识焊接变形规律,并可进一步推广至其他复杂过程,促进系统建模理论的发展。
创新要点:将区间值模糊集与粗糙集理论结合,通过引入新的包含度来构造区间值模糊粗糙集模型,经过数据采集、区间值模糊化、属性约简、规则抽取等步骤,从信息系统中提取出一个简化的模糊知识模型,给出获取模糊知识模型的完整算法;通过对经典的合成规则推理与现有的相似性推理的机理分析,提出一种新的相似性推理--基于合成规则的相似性推理方法。
方法提亮:与现有的智能方法相比,本文的知识建模方法不依赖于经验知识,所构建的模型易于理解和编辑,运行速度快,计算精度较高,对复杂过程建模有较强的适应性。改进的相似性推理方法,既考虑规则前提与结论之间的内在关联,又把相似性匹配作为必要环节,这样,输入和前提所发生的变化均能在输出中反映出来,推理结果更趋合理。
重要结论:将上述方法应用在焊接变形预报方面,实验结果验证了算法有效性,表明算法对复杂过程建模具有较强适应性。

关键词: 知识建模,  区间值模糊粗糙集,  相似性推理,  焊接变形预报 
[1] Muhammad Asif Zahoor Raja, Iftikhar Ahmad, Imtiaz Khan, Muhammed Ibrahem Syam, Abdul Majid Wazwaz. Neuro-heuristic computational intelligence for solving nonlinear pantograph systems[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 464-484.
[2] Nan-ning Zheng, Zi-yi Liu, Peng-ju Ren, Yong-qiang Ma, Shi-tao Chen, Si-yu Yu, Jian-ru Xue, Ba-dong Chen, Fei-yue Wang. Hybrid-augmented intelligence: collaboration and cognition[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 153-179.
[3] Jian-ru Xue, Di Wang, Shao-yi Du, Di-xiao Cui, Yong Huang, Nan-ning Zheng. A vision-centered multi-sensor fusing approach to self-localization and obstacle perception for robotic cars[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 122-138.
[4] Wei Li, Wen-jun Wu, Huai-min Wang, Xue-qi Cheng, Hua-jun Chen, Zhi-hua Zhou, Rong Ding. Crowd intelligence in AI 2.0 era[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 15-43.
[5] Bo-hu Li, Bao-cun Hou, Wen-tao Yu, Xiao-bing Lu, Chun-wei Yang. Applications of artificial intelligence in intelligent manufacturing: a review[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 86-96.
[6] Hao Fang, Shao-lei Lu, Jie Chen, Wen-jie Chen. Coalition formation based on a task-oriented collaborative ability vector[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 139-148.
[7] Tao-cheng Hu, Jin-hui Yu. Max-margin based Bayesian classifier[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 973-981.
[8] Jian-hua Dai, Hu Hu, Guo-jie Zheng, Qing-hua Hu, Hui-feng Han, Hong Shi. Attribute reduction in interval-valued information systems based on information entropies[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 919-928.
[9] Maiquel de Brito, Lauren Thévin, Catherine Garbay, Olivier Boissier, Jomi Fred Hübner. Supporting flexible regulation of crisis management by means of situated artificial institution[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 309-324.
[10] Izabela Nielsen, Robert Wójcik, Grzegorz Bocewicz, Zbigniew Banaszak. Multimodal processes optimization subject to fuzzy operation time constraints: declarative modeling approach[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 338-347.
[11] Jo?o Carneiro, Diogo Martinho, Goreti Marreiros, Paulo Novais. Intelligent negotiation model for ubiquitous group decision scenarios[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 296-308.
[12] Yu-qing Chen, Yu-pu Diao, Jing-gang Duan, Li-yuan Cui, Jia-yi Zhang. Time-dependent changes in eye-specific segregation in the dorsal lateral geniculate nucleus and superior colliculus of postnatal mice[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(10): 807-812.
[13] Ya-tao Zhang, Cheng-yu Liu, Shou-shui Wei, Chang-zhi Wei, Fei-fei Liu. ECG quality assessment based on a kernel support vector machine and genetic algorithm with a feature matrix[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(7): 564-573.
[14] Feng-fei Zhao, Zheng Qin, Zhuo Shao, Jun Fang, Bo-yan Ren. Greedy feature replacement for online value function approximation[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(3): 223-231.
[15] Ali Uysal, Raif Bayir. Real-time condition monitoring and fault diagnosis in switched reluctance motors with Kohonen neural network[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(12): 941-952.