Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (4): 309-324    DOI: 10.1631/FITEE.1500369
    
Supporting flexible regulation of crisis management by means of situated artificial institution
Maiquel de Brito, Lauren Thévin, Catherine Garbay, Olivier Boissier, Jomi Fred Hübner
Federal University of Santa Catarina, UFSC/CTC/DAS/PPGEAS - PO Box 476, Florianópolis, SC 88040-900, Brazil; LIG/Université de Grenoble, Grenoble 38041, France; Laboratoire Hubert Curien UMR CNRS 5516, Institut Henri Fayol, MINES Saint-Etienne, Saint-Etienne 42023, France
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  This paper highlights the use of situated artificial institution (SAI) within a hybrid, interactive, normative multi-agent system to regulate human collaboration in crisis management. Norms regulate the actions of human actors based on the dynamics of the environment in which they are situated. This dynamics results from both environment evolution and actors’ actions. Our objective is to situate norms in the environment in order to provide a context-aware crisis regulation. However, this coupling must be a loose one to keep both levels independent and easy-to-change in order to face the complex and changing crisis situations. To that aim, we introduce a constitutive level between environmental and normative states providing a loose coupling of normative regulation with environment evolution. Norms are thus no more referring to environmental facts but to status functions, i.e., the institutional interpretation of environmental facts through constitutive rules. We present how this declarative and distinct SAI modelling succeeds in managing the crisis with a context-aware crisis regulation.

Key wordsSituated artificial institutions (SAIs)      Normative system      Tangible interaction      Crisis management     
Received: 30 October 2015      Published: 05 April 2016
CLC:  TP18  
  C912.2  
Cite this article:

Maiquel de Brito, Lauren Thévin, Catherine Garbay, Olivier Boissier, Jomi Fred Hübner. Supporting flexible regulation of crisis management by means of situated artificial institution. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 309-324.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1500369     OR     http://www.zjujournals.com/xueshu/fitee/Y2016/V17/I4/309


通过情景化人工机构(SAI)实现灵活的危机管理校准

目的:将规则置于情景中,提供一个能够识别事态的危机管理调节方案。
创新点:在情景状态和规范状态之间引入本构关系,实现了规范校准和情景评估的松耦合,从而使规范不是指代情景状况而是事态函数,即通过本构规则构成对情景状况的制度性解释。
方法:首先介绍了危机管理的目标以及危机管理协同平台的应用。以一个简单但具有普遍意义的危机管理案例——受危机影响的区域疏散——为背景,定义了危机管理中的三类角色。接着阐述了由混合多智能体系统、混合互动以及规范系统构成的用于支持危机管理的系统,并分析人在危机管理中的合作。然后基于环境因素、事态函数、本构规则以及规范四个方面详细阐述了情景化人工机构(SAI)以及SAI在危机管理中的相应实现,分析了SAI对于危机管理的优势与贡献:包括比如情景解释的分歧、保持独立的规范性和本构关系、在具体情景中设计有效规范集和其生命周期、提高系统的自主性等。最后表明,物理情形的变化将引起本构规则的变化,从而激活相应的规范。
结论:本文的研究解决了危机管理工具面临的两个问题——清晰而有条理的协同和灵活性,能够有效处理事态解释的差异、规范的不一致性、事态演化和系统的自治水平等问题。

关键词: 情景化人工机构(SAI),  规范系统,  触知互动,  危机管理 
[1] Muhammad Asif Zahoor Raja, Iftikhar Ahmad, Imtiaz Khan, Muhammed Ibrahem Syam, Abdul Majid Wazwaz. Neuro-heuristic computational intelligence for solving nonlinear pantograph systems[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 464-484.
[2] Nan-ning Zheng, Zi-yi Liu, Peng-ju Ren, Yong-qiang Ma, Shi-tao Chen, Si-yu Yu, Jian-ru Xue, Ba-dong Chen, Fei-yue Wang. Hybrid-augmented intelligence: collaboration and cognition[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 153-179.
[3] Jian-ru Xue, Di Wang, Shao-yi Du, Di-xiao Cui, Yong Huang, Nan-ning Zheng. A vision-centered multi-sensor fusing approach to self-localization and obstacle perception for robotic cars[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 122-138.
[4] Wei Li, Wen-jun Wu, Huai-min Wang, Xue-qi Cheng, Hua-jun Chen, Zhi-hua Zhou, Rong Ding. Crowd intelligence in AI 2.0 era[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 15-43.
[5] Bo-hu Li, Bao-cun Hou, Wen-tao Yu, Xiao-bing Lu, Chun-wei Yang. Applications of artificial intelligence in intelligent manufacturing: a review[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 86-96.
[6] Hao Fang, Shao-lei Lu, Jie Chen, Wen-jie Chen. Coalition formation based on a task-oriented collaborative ability vector[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 139-148.
[7] Tao-cheng Hu, Jin-hui Yu. Max-margin based Bayesian classifier[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 973-981.
[8] Jian-hua Dai, Hu Hu, Guo-jie Zheng, Qing-hua Hu, Hui-feng Han, Hong Shi. Attribute reduction in interval-valued information systems based on information entropies[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 919-928.
[9] Izabela Nielsen, Robert Wójcik, Grzegorz Bocewicz, Zbigniew Banaszak. Multimodal processes optimization subject to fuzzy operation time constraints: declarative modeling approach[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 338-347.
[10] Jo?o Carneiro, Diogo Martinho, Goreti Marreiros, Paulo Novais. Intelligent negotiation model for ubiquitous group decision scenarios[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 296-308.
[11] Yu-qing Chen, Yu-pu Diao, Jing-gang Duan, Li-yuan Cui, Jia-yi Zhang. Time-dependent changes in eye-specific segregation in the dorsal lateral geniculate nucleus and superior colliculus of postnatal mice[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(10): 807-812.
[12] Zhi-qiang Feng, Cun-gen Liu, Hu Huang. Knowledge modeling based on interval-valued fuzzy rough set and similarity inference: prediction of welding distortion[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(8): 636-650.
[13] Ya-tao Zhang, Cheng-yu Liu, Shou-shui Wei, Chang-zhi Wei, Fei-fei Liu. ECG quality assessment based on a kernel support vector machine and genetic algorithm with a feature matrix[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(7): 564-573.
[14] Feng-fei Zhao, Zheng Qin, Zhuo Shao, Jun Fang, Bo-yan Ren. Greedy feature replacement for online value function approximation[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(3): 223-231.
[15] Ali Uysal, Raif Bayir. Real-time condition monitoring and fault diagnosis in switched reluctance motors with Kohonen neural network[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(12): 941-952.