Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (9): 919-928    DOI: 10.1631/FITEE.1500447
    
Attribute reduction in interval-valued information systems based on information entropies
Jian-hua Dai, Hu Hu, Guo-jie Zheng, Qing-hua Hu, Hui-feng Han, Hong Shi
School of Computer Science and Technology, Tianjin University, Tianjin 300350, China; College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Interval-valued data appear as a way to represent the uncertainty affecting the observed values. Dealing with interval-valued information systems is helpful to generalize the applications of rough set theory. Attribute reduction is a key issue in analysis of interval-valued data. Existing attribute reduction methods for single-valued data are unsuitable for interval-valued data. So far, there have been few studies on attribute reduction methods for interval-valued data. In this paper, we propose a framework for attribute reduction in interval-valued data from the viewpoint of information theory. Some information theory concepts, including entropy, conditional entropy, and joint entropy, are given in interval-valued information systems. Based on these concepts, we provide an information theory view for attribute reduction in interval-valued information systems. Consequently, attribute reduction algorithms are proposed. Experiments show that the proposed framework is effective for attribute reduction in interval-valued information systems.

Key wordsRough set theory      Interval-valued data      Attribute reduction      Entropy     
Received: 13 December 2015      Published: 31 August 2016
CLC:  TP18  
Cite this article:

Jian-hua Dai, Hu Hu, Guo-jie Zheng, Qing-hua Hu, Hui-feng Han, Hong Shi. Attribute reduction in interval-valued information systems based on information entropies. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 919-928.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1500447     OR     http://www.zjujournals.com/xueshu/fitee/Y2016/V17/I9/919


区间值信息系统中基于信息熵的属性约简

概要:区间值数据用来表示包含观察值的不确定性。区间值信息系统的处理有助于拓展粗糙集理论的应用范畴。属性约简是区间值数据分析的一个关键问题。现有针对传统单值数据的方法不适用于区间值数据。目前,关注区间值数据约简的研究还相对较少。本文从信息论的角度提出了一个区间值数据的属性约简框架,定义了区间值信息系统中的熵、条件熵以及联合熵等概念,继而构造了属性约简算法。实验结果表明所构造的方法是有效的。\n

关键词: 粗糙集理论,  区间值数据,  属性约简,  熵 
[1] Jian-zhi LI , Bo AI , Rui-si HE , Qi WANG , Mi YANG , Bei ZHANG , Ke GUAN , Dan-ping HE , Zhang-dui ZHONG , Ting ZHOU , Nan LI. Indoor massive multiple-input multiple-output channel characterization and performance evaluation[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(6): 773-787.
[2] De-long Feng, Ming-qing Xiao, Ying-xi Liu, Hai-fang Song, Zhao Yang, Ze-wen Hu. Finite-sensor fault-diagnosis simulation study of gas turbine engine using information entropy and deep belief networks[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1287-1304.
[3] Xin-tao Xia, Yin-ping Jin, Yong-zhi Xu, Yan-tao Shang, Long Chen. Hypothesis testing for reliability with a three-parameter Weibull distribution using minimum weighted relative entropy norm and bootstrap[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(2): 143-154.
[4] Lu YU, Jian-peng WANG. Review of the current and future technologies for video compression[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(1): 1-13.