|
|
Automatic recovery from resource exhaustion exceptions by collecting leaked resources |
Zi-ying Dai, Xiao-guang Mao, Li-qian Chen, Yan Lei |
College of Computer, National University of Defense Technology, Changsha 410073, China; Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China; Department of Computer Science, University of California, Davis, USA |
|
|
Abstract Despite the availability of garbage collectors, programmers must manually manage non-memory finite system resources such as file descriptors. Resource leaks can gradually consume all available resources and cause programs to raise resource exhaustion exceptions. However, programmers commonly provide no effective recovery approach for resource exhaustion exceptions, which often causes programs to halt without completing their tasks. In this paper, we propose to automatically recover programs from resource exhaustion exceptions caused by resource leaks. We transform programs to catch resource exhaustion exceptions, collect leaked resources, and then retry the failure code. A resource collector is designed to identify leaked resources and safely release them. We implement our approach for Java programs. Experimental results show that our approach can successfully handle resource exhaustion exceptions caused by reported resource leaks and allow programs to complete their tasks with an average execution time increase of 2.52% and negligible bytecode size increase.
|
Received: 07 December 2013
Published: 06 August 2014
|
|
Automatic recovery from resource exhaustion exceptions by collecting leaked resources
Despite the availability of garbage collectors, programmers must manually manage non-memory finite system resources such as file descriptors. Resource leaks can gradually consume all available resources and cause programs to raise resource exhaustion exceptions. However, programmers commonly provide no effective recovery approach for resource exhaustion exceptions, which often causes programs to halt without completing their tasks. In this paper, we propose to automatically recover programs from resource exhaustion exceptions caused by resource leaks. We transform programs to catch resource exhaustion exceptions, collect leaked resources, and then retry the failure code. A resource collector is designed to identify leaked resources and safely release them. We implement our approach for Java programs. Experimental results show that our approach can successfully handle resource exhaustion exceptions caused by reported resource leaks and allow programs to complete their tasks with an average execution time increase of 2.52% and negligible bytecode size increase.
关键词:
Failure avoidance,
Resource leaks,
Resource collection,
Exception handling,
Reliability
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|