Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2017, Vol. 18 Issue (2): 287-302    DOI: 10.1631/FITEE.1500381
Regular Papers     
Real-time road traffic state prediction based on ARIMA and Kalman filter
Dong-wei Xu, Yong-dong Wang, Li-min Jia, Yong Qin, Hong-hui Dong
College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China; United Key Laboratory of Embedded System of Zhejiang Province, Hangzhou 310023, China; State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University 100044, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  The realization of road traffic prediction not only provides real-time and effective information for travelers, but also helps them select the optimal route to reduce travel time. Road traffic prediction offers traffic guidance for travelers and relieves traffic jams. In this paper, a real-time road traffic state prediction based on autoregressive integrated moving average (ARIMA) and the Kalman filter is proposed. First, an ARIMA model of road traffic data in a time series is built on the basis of historical road traffic data. Second, this ARIMA model is combined with the Kalman filter to construct a road traffic state prediction algorithm, which can acquire the state, measurement, and updating equations of the Kalman filter. Third, the optimal parameters of the algorithm are discussed on the basis of historical road traffic data. Finally, four road segments in Beijing are adopted for case studies. Experimental results show that the real-time road traffic state prediction based on ARIMA and the Kalman filter is feasible and can achieve high accuracy.

Key wordsAutoregressive integrated moving average (ARIMA) model      Kalman filter      Road traffic state      Real-time      Prediction     
Received: 03 November 2015      Published: 10 February 2017
CLC:  TP393  
  U491.13  
Cite this article:

Dong-wei Xu, Yong-dong Wang, Li-min Jia, Yong Qin, Hong-hui Dong. Real-time road traffic state prediction based on ARIMA and Kalman filter. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 287-302.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1500381     OR     http://www.zjujournals.com/xueshu/fitee/Y2017/V18/I2/287

[1] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . A robust object tracking framework based on a reliable point assignment algorithm[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 545-558.
[2] Xiao-ming Gou, Zhi-wen Liu, Wei Liu, You-gen Xu. Filtering and tracking with trinion-valued adaptive algorithms[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 834-840.
[3] Rui Zhao, Gui-he Qin, Jia-qiao Liu. A rectangle bin packing optimization approach to the signal scheduling problem in the FlexRay static segment[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 375-388.
[4] Xin Li, Jin Sun, Fu Xiao. An efficient prediction framework for multi-parametric yield analysis under parameter variations[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1344-1359.
[5] Mehdi Ahmadi Jirdehi, Reza Hemmati, Vahid Abbasi, Hedayat Saboori. A multi-functional dynamic state estimator for error validation: measurement and parameter errors and sudden load changes[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1218-1227.
[6] Zhou-zhou He, Zhong-fei Zhang, Chun-ming Chen, Zheng-gang Wang. E-commerce business model mining and prediction[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(9): 707-719.
[7] Qi-rong Mao, Xin-yu Pan, Yong-zhao Zhan, Xiang-jun Shen. Using Kinect for real-time emotion recognition via facial expressions[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(4): 272-282.
[8] Jian Ding, Tao Huang, Jiang Liu, Yun-jie Liu. Virtual network embedding based on real-time topological attributes[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(2): 109-118.
[9] Zhi-qiang Feng, Cun-gen Liu, Hu Huang. Knowledge modeling based on interval-valued fuzzy rough set and similarity inference: prediction of welding distortion[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(8): 636-650.
[10] Jie Chen, Can-jun Yang, Jens Hofschulte, Wan-li Jiang, Cha Zhang. A robust optical/inertial data fusion system for motion tracking of the robot manipulator[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(7): 574-583.
[11] Peng-fei Qian, Guo-liang Tao, De-yuan Meng, Hao Liu. A modified direct adaptive robust motion trajectory tracking controller of a pneumatic system[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(10): 878-891.
[12] Hua-juan Huang, Shi-fei Ding, Zhong-zhi Shi. Primal least squares twin support vector regression[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(9): 722-732.
[13] Hong-ze Leng, Jun-qiang Song, Fu-kang Yin, Xiao-qun Cao. Notes and correspondence on ensemble-based three-dimensional variational filters[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(8): 634-641.
[14] Xiao-hu Ma, Yan-qi Tan, Gang-min Zheng. A fast classification scheme and its application to face recognition[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(7): 561-572.
[15] Zhi-bo Wang, Zhi Wang, Hong-long Chen, Jian-feng Li, Hong-bin Li, Jie Shen. HierTrack: an energy-efficient cluster-based target tracking system for wireless sensor networks[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(6): 395-406.