|
|
A robust optical/inertial data fusion system for motion tracking of the robot manipulator |
Jie Chen, Can-jun Yang, Jens Hofschulte, Wan-li Jiang, Cha Zhang |
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China; ABB Corporate Research China, Shanghai 201319, China |
|
|
Abstract We present an optical/inertial data fusion system for motion tracking of the robot manipulator, which is proved to be more robust and accurate than a normal optical tracking system (OTS). By data fusion with an inertial measurement unit (IMU), both robustness and accuracy of OTS are improved. The Kalman filter is used in data fusion. The error distribution of OTS provides an important reference on the estimation of measurement noise using the Kalman filter. With a proper setup of the system and an effective method of coordinate frame synchronization, the results of experiments show a significant improvement in terms of robustness and position accuracy.
|
Received: 23 October 2013
Published: 10 July 2014
|
|
基于光学摄像系统和惯性传感器数据融合的机器人运动跟踪系统
研究目的:机器人运动跟踪系统对测量精度、采样频率以及系统稳定性都有很高要求,目前市面上廉价的光学摄像运动跟踪系统难以满足。惯性传感器具有采样频率高、稳定性好等优点,但用于运动跟踪则会产生较大累计误差;它和光学摄像跟踪系统可以很好地互补。本文通过卡尔曼滤波算法将惯性传感器与光学摄像系统进行数据融合,以提升光学摄像系统的测量精度、采样频率以及稳定性,使其更好地用于机器人运动跟踪。 创新要点:提出了一种通过惯性传感器提升光学摄像系统性能的方法。基于对光学摄像系统性能的全面分析,提出了一个有针对性的系统实现方案。 方法提亮:将惯性传感器提供的加速度、角速度信息与光学摄像系统测得的位置、速度信息进行重力补偿和坐标同步处理后,运用卡尔曼滤波算法进行融合。通过分析光学摄像系统测量精度的不均匀分布情况,为卡尔曼滤波算法中测量噪声的估计提供了依据。 重要结论:解决了在系统实现过程中重力补偿、坐标同步以及测量噪声估计等问题。实验证实,通过数据融合,惯性传感器可以有效提高光学摄像系统的测量精度、采样频率以及稳定性。
关键词:
数据融合,
卡尔曼滤波,
光学摄像系统,
惯性传感器
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|