Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2011, Vol. 12 Issue (2): 110-115    DOI: 10.1631/jzus.C0910528
    
A tracking and predicting scheme for ping pong robot
Yuan-hui Zhang, Wei Wei*, Dan Yu, Cong-wei Zhong
School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(238KB)
Export: BibTeX | EndNote (RIS)      

Abstract  We describe a new tracking and predicting scheme applied to a lab-made ping pong robot. The robot has a monocular vision system comprised of a camera and a light. We propose an optimized strategy to calibrate the light center using the least square method. An ellipse fitting method is used to precisely locate the center of ball and shadow on the captured image. After the triangulation of the ball position in the world coordinates, a tracking algorithm based on a Kalman filter outputs an accurate estimation of the flight states including the ball position and velocity. Furthermore, a neural network model is constructed and trained to predict the following flight path. Experimental results show that this scheme can achieve a good predicting precision and success rate of striking an incoming ball. The robot can achieve a success rate of about 80% to return a flight ball of 5 m/s to the opposite court.

Key wordsPing pong robot      Calibration      Trajectory tracking      Kalman filter      Neural network     
Received: 25 August 2009      Published: 08 February 2011
CLC:  TP242.6  
Cite this article:

Yuan-hui Zhang, Wei Wei, Dan Yu, Cong-wei Zhong. A tracking and predicting scheme for ping pong robot. Front. Inform. Technol. Electron. Eng., 2011, 12(2): 110-115.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C0910528     OR     http://www.zjujournals.com/xueshu/fitee/Y2011/V12/I2/110


A tracking and predicting scheme for ping pong robot

We describe a new tracking and predicting scheme applied to a lab-made ping pong robot. The robot has a monocular vision system comprised of a camera and a light. We propose an optimized strategy to calibrate the light center using the least square method. An ellipse fitting method is used to precisely locate the center of ball and shadow on the captured image. After the triangulation of the ball position in the world coordinates, a tracking algorithm based on a Kalman filter outputs an accurate estimation of the flight states including the ball position and velocity. Furthermore, a neural network model is constructed and trained to predict the following flight path. Experimental results show that this scheme can achieve a good predicting precision and success rate of striking an incoming ball. The robot can achieve a success rate of about 80% to return a flight ball of 5 m/s to the opposite court.

关键词: Ping pong robot,  Calibration,  Trajectory tracking,  Kalman filter,  Neural network 
[1] Chao-chao BAI , Wei-qiang WANG, Tong ZHAO , Ru-xin WANG , Ming-qiang LI. Deep learning compact binary codes for fingerprint indexing[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(9): 1112-1123.
[2] Zhi-hua LU, Meng-yao ZHU, Qing-wei YE, Yu ZHOU. Performance analysis of two EM-based measurement bias estimation processes for tracking systems[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(9): 1151-1165.
[3] Che LIN, Rong-hao ZHENG, Gang-feng YAN, Shi-yuan LU. Convergence analysis of distributed Kalman filtering for relative sensing networks[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(9): 1063-1075.
[4] Zai-sheng PAN , Xuan-hao ZHOU , Peng CHEN. Development and application of a neural network based coating #br# weight control system for a hot-dip galvanizing line[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(7): 834-846.
[5] Fan XU, Jin WANG, Guo-dong LU. Adaptive robust neural control of a two-manipulator system holding a rigid object with inaccurate base frame parameters[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(11): 1316-1327.
[6] Xiaobo Sharon HU, Michael NIEMIER. Cross-layer efforts for energy-efficient computing: towards peta operations per second per watt[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(10): 1209-1223.
[7] Jian CHENG , Pei-song WANG, Gang LI, Qing-hao HU, Han-qing LU. Recent advances in efficient computation of deep convolutional neural networks[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(1): 64-77.
[8] Hao ZHU , Qing WANG , Jingyi YU. Light field imaging: models, calibrations, reconstructions, and applications[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(9): 1236-1249.
[9] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . A robust object tracking framework based on a reliable point assignment algorithm[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 545-558.
[10] Yu-jun Xiao, Wen-yuan Xu, Zhen-hua Jia, Zhuo-ran Ma, Dong-lian Qi. NIPAD: a non-invasive power-based anomaly detection scheme for programmable logic controllers[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 519-534.
[11] Muhammad Asif Zahoor Raja, Iftikhar Ahmad, Imtiaz Khan, Muhammed Ibrahem Syam, Abdul Majid Wazwaz. Neuro-heuristic computational intelligence for solving nonlinear pantograph systems[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 464-484.
[12] Dong-wei Xu, Yong-dong Wang, Li-min Jia, Yong Qin, Hong-hui Dong. Real-time road traffic state prediction based on ARIMA and Kalman filter[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 287-302.
[13] Tian-cheng LI, Jin-ya SU, Wei LIU, Juan M. CORCHADO. Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(12): 1913-1939.
[14] Guang-hui Song, Xiao-gang Jin, Gen-lang Chen, Yan Nie. Two-level hierarchical feature learning for image classification[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 897-906.
[15] Xiao-ming Gou, Zhi-wen Liu, Wei Liu, You-gen Xu. Filtering and tracking with trinion-valued adaptive algorithms[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 834-840.