Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (8): 834-840    DOI: 10.1631/FITEE.1601164
    
Filtering and tracking with trinion-valued adaptive algorithms
Xiao-ming Gou, Zhi-wen Liu, Wei Liu, You-gen Xu
School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China; Communications Research Group, Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 3JD, UK
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  A new model for three-dimensional processes based on the trinion algebra is introduced for the first time. Compared to the pure quaternion model, the trinion model is more compact and computationally more efficient, while having similar or comparable performance in terms of adaptive linear filtering. Moreover, the trinion model can effectively represent the general relationship of state evolution in Kalman filtering, where the pure quaternion model fails. Simulations on real-world wind recordings and synthetic data sets are provided to demonstrate the potential of this new modeling method.

Key wordsThree-dimensional processes      Trinion      Least mean squares      Kalman filter     
Received: 13 April 2016      Published: 05 August 2016
CLC:  TN911.7  
Cite this article:

Xiao-ming Gou, Zhi-wen Liu, Wei Liu, You-gen Xu. Filtering and tracking with trinion-valued adaptive algorithms. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 834-840.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1601164     OR     http://www.zjujournals.com/xueshu/fitee/Y2016/V17/I8/834


三元数域自适应滤波与跟踪算法

概要:本文首次提出了一种基于三元数代数的三维过程新模型。与纯四元数模型相比,三元数模型更加紧凑,计算量更小,同时在自适应线性滤波方面具有类似或者可比的性能。此外,三元数模型可以有效表征卡尔曼滤波中状态转移的一般性关系,而纯四元数模型则无法对此进行表征。基于实测风力数据和合成数据集的仿真实验验证了这一新建模方法的潜能。

关键词: 三维过程,  三元数,  最小均方,  卡尔曼滤波器 
[1] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . A robust object tracking framework based on a reliable point assignment algorithm[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 545-558.
[2] Dong-wei Xu, Yong-dong Wang, Li-min Jia, Yong Qin, Hong-hui Dong. Real-time road traffic state prediction based on ARIMA and Kalman filter[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 287-302.
[3] Mehdi Ahmadi Jirdehi, Reza Hemmati, Vahid Abbasi, Hedayat Saboori. A multi-functional dynamic state estimator for error validation: measurement and parameter errors and sudden load changes[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1218-1227.
[4] Jie Chen, Can-jun Yang, Jens Hofschulte, Wan-li Jiang, Cha Zhang. A robust optical/inertial data fusion system for motion tracking of the robot manipulator[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(7): 574-583.
[5] Peng-fei Qian, Guo-liang Tao, De-yuan Meng, Hao Liu. A modified direct adaptive robust motion trajectory tracking controller of a pneumatic system[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(10): 878-891.
[6] Hong-ze Leng, Jun-qiang Song, Fu-kang Yin, Xiao-qun Cao. Notes and correspondence on ensemble-based three-dimensional variational filters[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(8): 634-641.
[7] Jian Xu, Jian-xun Li, Sheng Xu. Quantized innovations Kalman filter: stability and modification with scaling quantization[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(2): 118-130.
[8] Quan-bo Ge, Wen-bin Li, Cheng-lin Wen. SCKF-STF-CN: a universal nonlinear filter for maneuver target tracking[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(8): 615-628.
[9] Yuan-hui Zhang, Wei Wei, Dan Yu, Cong-wei Zhong. A tracking and predicting scheme for ping pong robot[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(2): 110-115.