Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (4): 375-388    DOI: 10.1631/FITEE.1500232
    
A rectangle bin packing optimization approach to the signal scheduling problem in the FlexRay static segment
Rui Zhao, Gui-he Qin, Jia-qiao Liu
Department of Computer Science and Technology, Jilin University, Changchun 130000, China; Technology Development Department, FAW-Volkswagen Automotive Company Ltd., Changchun 130000, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  As FlexRay communication protocol is extensively used in distributed real-time applications on vehicles, signal scheduling in FlexRay network becomes a critical issue to ensure the safe and efficient operation of time-critical applications. In this study, we propose a rectangle bin packing optimization approach to schedule communication signals with timing constraints into the FlexRay static segment at minimum bandwidth cost. The proposed approach, which is based on integer linear programming (ILP), supports both the slot assignment mechanisms provided by the latest version of the FlexRay specification, namely, the single sender slot multiplexing, and multiple sender slot multiplexing mechanisms. Extensive experiments on a synthetic and an automotive X-by-wire system case study demonstrate that the proposed approach has a well optimized performance.

Key wordsFlexRay      Real-time applications      Rectangle bin packing      Schedule optimization      Slot multiplexing     
Received: 21 July 2015      Published: 05 April 2016
CLC:  TP393  
Cite this article:

Rui Zhao, Gui-he Qin, Jia-qiao Liu. A rectangle bin packing optimization approach to the signal scheduling problem in the FlexRay static segment. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 375-388.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1500232     OR     http://www.zjujournals.com/xueshu/fitee/Y2016/V17/I4/375


一种解决FlexRay总线静态段信号调度问题的矩形装箱优化方法

目的:为解决大量汽车分布式实时应用的数据信号在FlexRay总线静态段的有效调度问题,提出了一种矩形装箱优化方法。该方法在满足每个通信信号时间限制的前提下,可以实现最小化FlexRay总线静态段带宽消耗。
创新点:提出了一种矩形装箱优化方法将强实时车载通信信号以最小的带宽消耗调度在FlexRay总线静态段。提出的方法具备以下三个显著优势:(1)该方法同时支持最新版FlexRay通信协议中两个时隙分配机制,包括单发送时隙复用机制及多发送时隙复用机制(截至目前该方法是第一个使用多发送时隙复用机制进行FlexRay静态段信号优化调度的研究);(2)该方法创造性地将更小粒度的信号实例作为优化调度的基本单元,允许将不同周期的信号实例调度到相同的时隙上,提高了调度的灵活性,从而大幅度增加了FlexRay静态段带宽的利用率;(3)通过应用特定领域的知识减少了方法的搜索空间,显著提高了该方法的运行效率。
方法:首先,通过举例分析了FlexRay总线单发送时隙复用机制及多发送时隙复用机制对静态段信号优化调度的重要作用(图2和3)。然后,基于整数线性规划方法,将FlexRay总线静态段的信号优化调度问题转换成一个具有诸多特殊限制的矩形装箱问题。提出的方法以最小化静态段使用的时隙的目标,以信号的时间限制、FlexRay协议中相关限制,包括信号打包的限制、单发送时隙复用机制、多发送时隙复用机制等,为约束条件。此外,应用特定领域的知识减少了整数线性规划的搜索空间,大幅度提高了该方法的运行效率。最后,通过大量基于合成信号集及一个真实线控系统信号集的试验,证明了提出的矩形装箱优化方法具有良好的性能。
结论:提出了一种解决FlexRay总线静态段信号调度问题的矩形装箱优化方法。该方法基于整数线性规划,在满足每个信号时间限制的前提下,实现了静态段带宽消耗的最小化。

关键词: FlexRay,  实时应用,  矩形装箱,  优化调度,  时隙复用 
[1] Mei-juan Jia, Hui-qiang Wang, Jun-yu Lin, Guang-sheng Feng, Hai-tao Yu. DGTM: a dynamic grouping based trust model for mobile peer-to-peer networks[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 559-569.
[2] Shuo Wang, Jiao Zhang, Tao Huang, Jiang Liu, Yun-jie Liu, F. Richard Yu. FlowTrace: measuring round-trip time and tracing path in software-defined networking with low communication overhead[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 206-219.
[3] Dong-wei Xu, Yong-dong Wang, Li-min Jia, Yong Qin, Hong-hui Dong. Real-time road traffic state prediction based on ARIMA and Kalman filter[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 287-302.
[4] Reza Sookhtsaraei, Javad Artin, Ali Ghorbani, Ahmad Faraahi, Hadi Adineh. A locality-based replication manager for data cloud[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1275-1286.
[5] Da-fang Zhang, Dan Chen, Yan-biao Li, Kun Xie, Tong Shen. A splitting-after-merging approach to multi-FIB compression and fast refactoring in virtual routers[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1266-1274.
[6] Jun-feng Xie, Ren-chao Xie, Tao Huang, Jiang Liu, F. Richard Yu, Yun-jie Liu. Caching resource sharing in radio access networks: a game theoretic approach[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1253-1265.
[7] Gui-lin CAI, Bao-sheng WANG, Wei HU, Tian-zuo WANG. Moving target defense: state of the art and characteristics[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1122-1153.
[8] Guang-jia Song, Zhen-zhou Ji. Anonymous-address-resolution model[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 1044-1055.
[9] Adel Khosravi, Yousef Seifi Kavian. Autonomous fault-diagnosis and decision-making algorithm for determining faulty nodes in distributed wireless networks[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 885-896.
[10] Vignesh Renganathan Raja, Chung-Horng Lung, Abhishek Pandey, Guo-ming Wei, Anand Srinivasan. A subtree-based approach to failure detection and protection for multicast in SDN[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 682-700.
[11] Huan-zhao Wang, Peng Zhang, Lei Xiong, Xin Liu, Cheng-chen Hu. A secure and high-performance multi-controller architecture for software-defined networking[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 634-646.
[12] Peng Xiao, Zhi-yang Li, Song Guo, Heng Qi, Wen-yu Qu, Hai-sheng Yu. A K self-adaptive SDN controller placement for wide area networks[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 620-633.
[13] Shui-qing Gong, Jing Chen , Qiao-yan Kang, Qing-wei Meng, Qing-chao Zhu , Si-yi Zhao. An efficient and coordinated mapping algorithm in virtualized SDN networks[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 701-716.
[14] Bo Liu, Ming Chen, Bo Xu, Hui Hu, Chao Hu, Qing-yun Zuo, Chang-you Xing. An OpenFlow-based performance-oriented multipath forwarding scheme in datacenters[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 647-660.
[15] Mingjie Feng, Shiwen Mao, Tao Jiang. Enhancing the performance of future wireless networks with software-defined networking[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 606-619.